C# Onnx 特征匹配 DeDoDe 检测,不描述---描述,不检测

目录

介绍

效果

模型信息

项目

代码 

下载 


介绍

github地址:https://github.com/Parskatt/DeDoDe

DeDoDe 🎶 Detect, Don't Describe - Describe, Don't Detect, for Local Feature Matching

The DeDoDe detector learns to detect 3D consistent repeatable keypoints, which the DeDoDe descriptor learns to match. The result is a powerful decoupled local feature matcher.

Training DeDoDe

DISCLAMER: I've (Johan) not yet tested that the training scripts here reproduces our original results. This repo is very similar to the internal training repo, but there might be bugs introduced by refactoring etc. Let me know if you face any issues reproducing our results (or if you somehow get better results :D).

See experiments for the scripts to train DeDoDe. We trained on a single A100-40GB with a batchsize of 8. Note that you need to do the data prep first, see data_prep.

As usual, we require that you have the MegaDepth dataset already downloaded, and that you have the prepared scene info from DKM.

效果

模型信息

Inputs
-------------------------
name:images
tensor:Float[-1, 3, -1, -1]
---------------------------------------------------------------

Outputs
-------------------------
name:matches_A
tensor:Float[-1, -1]
name:matches_B
tensor:Float[-1, -1]
name:batch_ids
tensor:Int64[-1]
---------------------------------------------------------------

项目

VS2022

.net framework 4.8

OpenCvSharp 4.8

Microsoft.ML.OnnxRuntime 1.16.2

代码 

using Microsoft.ML.OnnxRuntime.Tensors;
using Microsoft.ML.OnnxRuntime;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Windows.Forms;
using System.Linq;
using System.Drawing;
using static System.Net.Mime.MediaTypeNames;
using System.Numerics;

namespace Onnx_Demo
{
    public partial class frmMain : Form
    {
        public frmMain()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        string image_path2 = "";

        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;

        int inpWidth;
        int inpHeight;

        float[] mean =new float[] { 0.485f, 0.456f, 0.406f };
        float[] std = new float[] { 0.229f, 0.224f, 0.225f };

        Mat image;
        Mat image2;

        string model_path = "";

        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        Tensor<float> mask_tensor;
        List<NamedOnnxValue> input_ontainer;

        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;

            pictureBox1.Image = null;
            pictureBox2.Image = null;
            textBox1.Text = "";

            image_path = ofd.FileName;
            pictureBox1.Image = new System.Drawing.Bitmap(image_path);
            image = new Mat(image_path);
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            // 创建输入容器
            input_ontainer = new List<NamedOnnxValue>();

            // 创建输出会话
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行

            // 创建推理模型类,读取本地模型文件
            model_path = "model/dedode_end2end_1024.onnx";

            inpHeight = 256;
            inpWidth = 256;

            onnx_session = new InferenceSession(model_path, options);

            // 创建输入容器
            input_ontainer = new List<NamedOnnxValue>();

            image_path = "test_img/im_A.jpg";
            pictureBox1.Image = new Bitmap(image_path);

            image_path2 = "test_img/im_B.jpg";
            pictureBox3.Image = new Bitmap(image_path2);

        }

        private unsafe void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }
            textBox1.Text = "检测中,请稍等……";
            pictureBox2.Image = null;
            System.Windows.Forms.Application.DoEvents();

            image = new Mat(image_path);
            image2 = new Mat(image_path2);

            float[] input_tensor_data = new float[2 * 3 * inpWidth * inpHeight];

            //preprocess
            Mat dstimg = new Mat();
            Cv2.CvtColor(image, dstimg, ColorConversionCodes.BGR2RGB);
            Cv2.Resize(dstimg, dstimg, new OpenCvSharp.Size(inpWidth, inpHeight));
            for (int c = 0; c < 3; c++)
            {
                for (int i = 0; i < inpHeight; i++)
                {
                    for (int j = 0; j < inpWidth; j++)
                    {
                        float pix = ((byte*)(dstimg.Ptr(i).ToPointer()))[j * 3 + c];
                        input_tensor_data[c * inpWidth * inpHeight + i * inpWidth + j] = (float)((pix / 255.0 - mean[c]) / std[c]);
                    }
                }
            }

            Cv2.CvtColor(image2, dstimg, ColorConversionCodes.BGR2RGB);
            Cv2.Resize(dstimg, dstimg, new OpenCvSharp.Size(inpWidth, inpHeight));
            for (int c = 0; c < 3; c++)
            {
                for (int i = 0; i < inpHeight; i++)
                {
                    for (int j = 0; j < inpWidth; j++)
                    {
                        float pix = ((byte*)(dstimg.Ptr(i).ToPointer()))[j * 3 + c];
                        input_tensor_data[(3+c )* inpWidth * inpHeight + i * inpWidth + j] = (float)((pix / 255.0 - mean[c]) / std[c]);
                    }
                }
            }

            input_tensor = new DenseTensor<float>(input_tensor_data, new[] { 2, 3, inpHeight, inpWidth });

            //将 input_tensor 放入一个输入参数的容器,并指定名称
            input_ontainer.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));

            dt1 = DateTime.Now;
            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_ontainer);
            dt2 = DateTime.Now;

            //Postprocessing
            //将输出结果转为DisposableNamedOnnxValue数组
            results_onnxvalue = result_infer.ToArray();

            float[] matches_A = results_onnxvalue[0].AsTensor<float>().ToArray();
            float[] matches_B = results_onnxvalue[1].AsTensor<float>().ToArray();
            int num_points = results_onnxvalue[0].AsTensor<float>().Dimensions[0];

            List<KeyPoint> points_A = new List<KeyPoint>();
            List<KeyPoint> points_B = new List<KeyPoint>();

            KeyPoint temp;
            for (int i = 0; i < num_points; i++)
            {
                temp = new KeyPoint();
                temp.Pt.X = (float)((matches_A[i * 2] + 1) * 0.5 * image.Cols);
                temp.Pt.Y = (float)((matches_A[i * 2 + 1] + 1) * 0.5 * image.Rows);
                temp.Size = 1f;
                points_A.Add(temp);
            }

            num_points = results_onnxvalue[1].AsTensor<float>().Dimensions[0];
            for (int i = 0; i < num_points; i++)
            {
                temp = new KeyPoint();
                temp.Pt.X = (float)((matches_B[i * 2] + 1) * 0.5 * image2.Cols);
                temp.Pt.Y = (float)((matches_B[i * 2 + 1] + 1) * 0.5 * image2.Rows);
                temp.Size = 1f;
                points_B.Add(temp);
            }

            //匹配结果放在matches里面
            num_points = points_A.Count();
            List<DMatch> matches=new List<DMatch>();
            for (int i = 0; i < num_points; i++)
            {
                matches.Add(new DMatch(i, i, 0f));
            }

            //按照匹配关系将图画出来,背景图为match_img
            Mat match_img = new Mat();
            Cv2.DrawMatches(image, points_A, image2, points_B, matches, match_img);

            pictureBox2.Image = new System.Drawing.Bitmap(match_img.ToMemoryStream());
            textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";

        }

        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }

        private void button3_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;

            pictureBox3.Image = null;
            pictureBox2.Image = null;
            textBox1.Text = "";

            image_path2 = ofd.FileName;
            pictureBox3.Image = new System.Drawing.Bitmap(image_path2);
            image2 = new Mat(image_path2);
        }

        private void pictureBox3_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox3.Image);
        }

        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }
    }
}

using Microsoft.ML.OnnxRuntime.Tensors;
using Microsoft.ML.OnnxRuntime;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Windows.Forms;
using System.Linq;
using System.Drawing;
using static System.Net.Mime.MediaTypeNames;
using System.Numerics;

namespace Onnx_Demo
{
    public partial class frmMain : Form
    {
        public frmMain()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        string image_path2 = "";

        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;

        int inpWidth;
        int inpHeight;

        float[] mean =new float[] { 0.485f, 0.456f, 0.406f };
        float[] std = new float[] { 0.229f, 0.224f, 0.225f };

        Mat image;
        Mat image2;

        string model_path = "";

        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        Tensor<float> mask_tensor;
        List<NamedOnnxValue> input_ontainer;

        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;

            pictureBox1.Image = null;
            pictureBox2.Image = null;
            textBox1.Text = "";

            image_path = ofd.FileName;
            pictureBox1.Image = new System.Drawing.Bitmap(image_path);
            image = new Mat(image_path);
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            // 创建输入容器
            input_ontainer = new List<NamedOnnxValue>();

            // 创建输出会话
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行

            // 创建推理模型类,读取本地模型文件
            model_path = "model/dedode_end2end_1024.onnx";

            inpHeight = 256;
            inpWidth = 256;

            onnx_session = new InferenceSession(model_path, options);

            // 创建输入容器
            input_ontainer = new List<NamedOnnxValue>();

            image_path = "test_img/im_A.jpg";
            pictureBox1.Image = new Bitmap(image_path);

            image_path2 = "test_img/im_B.jpg";
            pictureBox3.Image = new Bitmap(image_path2);

        }

        private unsafe void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }
            textBox1.Text = "检测中,请稍等……";
            pictureBox2.Image = null;
            System.Windows.Forms.Application.DoEvents();

            image = new Mat(image_path);
            image2 = new Mat(image_path2);

            float[] input_tensor_data = new float[2 * 3 * inpWidth * inpHeight];

            //preprocess
            Mat dstimg = new Mat();
            Cv2.CvtColor(image, dstimg, ColorConversionCodes.BGR2RGB);
            Cv2.Resize(dstimg, dstimg, new OpenCvSharp.Size(inpWidth, inpHeight));
            for (int c = 0; c < 3; c++)
            {
                for (int i = 0; i < inpHeight; i++)
                {
                    for (int j = 0; j < inpWidth; j++)
                    {
                        float pix = ((byte*)(dstimg.Ptr(i).ToPointer()))[j * 3 + c];
                        input_tensor_data[c * inpWidth * inpHeight + i * inpWidth + j] = (float)((pix / 255.0 - mean[c]) / std[c]);
                    }
                }
            }

            Cv2.CvtColor(image2, dstimg, ColorConversionCodes.BGR2RGB);
            Cv2.Resize(dstimg, dstimg, new OpenCvSharp.Size(inpWidth, inpHeight));
            for (int c = 0; c < 3; c++)
            {
                for (int i = 0; i < inpHeight; i++)
                {
                    for (int j = 0; j < inpWidth; j++)
                    {
                        float pix = ((byte*)(dstimg.Ptr(i).ToPointer()))[j * 3 + c];
                        input_tensor_data[(3+c )* inpWidth * inpHeight + i * inpWidth + j] = (float)((pix / 255.0 - mean[c]) / std[c]);
                    }
                }
            }

            input_tensor = new DenseTensor<float>(input_tensor_data, new[] { 2, 3, inpHeight, inpWidth });

            //将 input_tensor 放入一个输入参数的容器,并指定名称
            input_ontainer.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));

            dt1 = DateTime.Now;
            //运行 Inference 并获取结果
            result_infer = onnx_session.Run(input_ontainer);
            dt2 = DateTime.Now;

            //Postprocessing
            //将输出结果转为DisposableNamedOnnxValue数组
            results_onnxvalue = result_infer.ToArray();

            float[] matches_A = results_onnxvalue[0].AsTensor<float>().ToArray();
            float[] matches_B = results_onnxvalue[1].AsTensor<float>().ToArray();
            int num_points = results_onnxvalue[0].AsTensor<float>().Dimensions[0];

            List<KeyPoint> points_A = new List<KeyPoint>();
            List<KeyPoint> points_B = new List<KeyPoint>();

            KeyPoint temp;
            for (int i = 0; i < num_points; i++)
            {
                temp = new KeyPoint();
                temp.Pt.X = (float)((matches_A[i * 2] + 1) * 0.5 * image.Cols);
                temp.Pt.Y = (float)((matches_A[i * 2 + 1] + 1) * 0.5 * image.Rows);
                temp.Size = 1f;
                points_A.Add(temp);
            }

            num_points = results_onnxvalue[1].AsTensor<float>().Dimensions[0];
            for (int i = 0; i < num_points; i++)
            {
                temp = new KeyPoint();
                temp.Pt.X = (float)((matches_B[i * 2] + 1) * 0.5 * image2.Cols);
                temp.Pt.Y = (float)((matches_B[i * 2 + 1] + 1) * 0.5 * image2.Rows);
                temp.Size = 1f;
                points_B.Add(temp);
            }

            //匹配结果放在matches里面
            num_points = points_A.Count();
            List<DMatch> matches=new List<DMatch>();
            for (int i = 0; i < num_points; i++)
            {
                matches.Add(new DMatch(i, i, 0f));
            }

            //按照匹配关系将图画出来,背景图为match_img
            Mat match_img = new Mat();
            Cv2.DrawMatches(image, points_A, image2, points_B, matches, match_img);

            pictureBox2.Image = new System.Drawing.Bitmap(match_img.ToMemoryStream());
            textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";

        }

        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }

        private void button3_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;

            pictureBox3.Image = null;
            pictureBox2.Image = null;
            textBox1.Text = "";

            image_path2 = ofd.FileName;
            pictureBox3.Image = new System.Drawing.Bitmap(image_path2);
            image2 = new Mat(image_path2);
        }

        private void pictureBox3_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox3.Image);
        }

        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }
    }
}

下载 

源码下载

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/179181.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

RabbitMQ 的网页界面操作说明

启动 上面给用户添加了角色和权限&#xff0c; 我们就可以登录了 先手动创建两个队列&#xff0c;然后再把这两个队列和交换机绑定&#xff0c;就可以发布消息 回到队列中看看有什么变化 队列中显示绑定了交换机 再看一下队列中发生的变化 可以看到队列中收到了信息

【鸿蒙应用ArkTS开发系列】- 云开发入门实战一使用鸿蒙登录组件实现客户端登录

目录 概述使用云端一体化开发模板创建项目工程创建登录入口页面集成登录SDK组件依赖登录组件SDK使用登录组件SDK 开启“手机号码”和“邮箱地址”认证方式 概述 通过本次课程&#xff0c;我们将学习怎么使用云端一体化开发模板来创建云开发工程&#xff0c;以及如何使用鸿蒙登…

Bean基本注解开发

Commponent 使用Component注解代替<bean>标签 <!--注解扫描:扫描指定的基本包及其子包下的类&#xff0c;识别使用了Component注解的文件--><context:component-scan base-package"org.xfy"></context:component-scan> package org.xfy.Dao.…

python二叉树链树_树的链式存储结构

二叉链树是一种树状数据结构&#xff0c;其中每个节点最多有两个子节点&#xff0c;分别称为左子节点和右子节点。每个节点包含一个数据元素和指向其左右子节点的指针。二叉链树可以是空树&#xff0c;也可以是具有以下特点的非空树&#xff1a; 1. 每个节点最多有两个子节点。…

Unity 三维场景的搭建 软件构造实验报告

实验2&#xff1a;仿真系统功能实现 1.实验目的 &#xff08;1&#xff09;熟悉在Unity中设置仿真场景&#xff1b; &#xff08;2&#xff09;熟悉在Unity中C#语言的使用&#xff1b; &#xff08;3&#xff09;熟悉仿真功能的实现。 2.实验内容 新建一个仿真场景&#x…

[操作系统]进程和线程

目录 1.什么是进程 1.1进程控制块抽象 1.2 CPU 分配 —— 进程调度&#xff08;Process Scheduling&#xff09; 1.3内存分配 —— 内存管理&#xff08;Memory Manage&#xff09; 1.4进程间通信(Inter Process Communication) 2.线程 2.1概念 2.2为什么要有线程 2.3线…

《DApp开发:开启全新数字时代篇章》

随着区块链技术的日益成熟&#xff0c;去中心化应用&#xff08;DApp&#xff09;逐渐成为数字世界的新焦点。在这个充满无限可能的全新领域&#xff0c;DApp开发为创新者们提供了开启数字时代新篇章的钥匙。 一、DApp&#xff1a;区块链创新成果 DApp是建立在区块链技术基础之…

【追求卓越09】算法--散列表(哈希表)

引导 通过前面几个章节的学习&#xff08;二分查找&#xff0c;跳表&#xff09;&#xff0c;我们发现想要快速查找某一个元素&#xff0c;首先需要将所有元素进行排序&#xff0c;再利用二分法思想进行查找&#xff0c;复杂度是O(logn)。有没有更快的查找方式呢&#xff1f; 本…

【产品安全平台】上海道宁与Cybellum将整个产品安全工作流程整合到一个专用平台中,保持构建的互联产品的网络安全和网络合规性

Cybellum将 整个产品安全工作流程 整合到一个专用平台中 使设备制造商能够 保持他们构建的互联产品的 网络安全和网络合规性 产品安全性对 每个人来说都不一样 每个行业的系统、工作流程和 法规都存在根本差异 因此&#xff0c;Cybellum量身定制了 Cybellum的平台和技…

排序算法--快速排序

实现逻辑 ① 从数列中挑出一个元素&#xff0c;称为 “基准”&#xff08;pivot&#xff09;&#xff0c; ② 重新排序数列&#xff0c;所有元素比基准值小的摆放在基准前面&#xff0c;所有元素比基准值大的摆在基准的后面&#xff08;相同的数可以到任一边&#xff09;。在这…

探索实人认证API:保障在线交互安全的关键一步

前言 在数字化时代&#xff0c;随着人们生活的日益数字化&#xff0c;各种在线服务的普及&#xff0c;安全性成为用户体验的至关重要的一环。特别是在金融、电商、社交等领域&#xff0c;确保用户身份的真实性显得尤为重要。而实人认证API作为一种先进的身份验证技术&#xff…

mysql的联合索引最左匹配原则问题

MySQL的联合索引 联合索引的最左匹配原则会一直向右匹配直到遇到范围查询(>、<、between、like) 就会停止匹配。 这个结论并不全对&#xff01;去掉 「between 和 like 」这个结论就没问题了 经过实验的证明&#xff0c;我得出的结论是这样的&#xff1a; 联合索引的最…

t检验(连续变量)和卡方检验(分类变量)

目录 情形 不同种类的萼片差异 数据类型查看&#xff1a; 差异分析&#xff1a; 不同萼片的种类差异 数据准备 二分类卡方检验 绘图 情形 &#xff1a;当有两列数据进行分析比较时&#xff0c;一列为连续变量&#xff0c;一列数据为分类变量。 rm(list ls()) libra…

Linux编程 文件操作 creat open

文件描述符 文件描述符在形式上是一个非负整数。实际上&#xff0c;它是一个索引值&#xff0c;指向内核为每一个进程所维护的该进程打开文件的记录表。当程序打开一个现有文件或者创建一个新文件时&#xff0c;内核向进程返回一个文件描述符。 启动一个进程之后&#xff0c;…

使用Pytorch从零开始构建WGAN

引言 在考虑生成对抗网络的文献时&#xff0c;Wasserstein GAN 因其与传统 GAN 相比的训练稳定性而成为关键概念之一。在本文中&#xff0c;我将介绍基于梯度惩罚的 WGAN 的概念。文章的结构安排如下&#xff1a; WGAN 背后的直觉&#xff1b;GAN 和 WGAN 的比较&#xff1b;…

财报解读:将低价作为“唯一性基础武器”的京东,效果在慢慢显现

近日&#xff0c;京东集团公布了2023年第三季度财报。这是自创始人刘强东去年11月强势回归京东一线、主导一系列战略调整和人事组织改革近一年后的一份“成绩单”。 财报显示&#xff0c;第三季度京东实现收入2477亿元&#xff0c;同比增长1.7%&#xff1b;归属于公司普通股股…

Linux上通过SSL/TLS和start tls连接到LDAP服务器

一&#xff0c;大致流程。 1.首先在Linux上搭建一个LDAP服务器 2.在LDAP服务器上安装CA证书&#xff0c;服务器证书&#xff0c;因为SSL/TLS&#xff0c;start tls都属于机密通信&#xff0c;需要客户端和服务器都存在一个相同的证书认证双方的身份。3.安装phpldapadmin工具&am…

HubSpot驱动业务增长:客户拓展的完美引擎!

随着数字化时代的来临&#xff0c;企业面临着前所未有的挑战&#xff0c;尤其在拓展客户方面&#xff0c;传统的方法已经难以适应新的市场环境。在这个背景下&#xff0c;数字化时代的客户拓展变得更为复杂&#xff0c;企业需要更智能、更综合的解决方案来脱颖而出。 HubSpot作…

Java之API(上)

前言&#xff1a; 这一次内容主要是围绕Java开发中的一些常用类&#xff0c;然后主要是去学习这些类里面的方法。 一、高级API&#xff1a; (1)介绍&#xff1a;API指的是应用程序编程接口&#xff0c;API可以让编程变得更加方便简单。Java也提供了大量API供程序开发者使用&…

结构体与指针_sizeof_static_extern_函数指针数组_函数指针_回调函数

一、结构体与指针 #include <stdint.h> #include <stdlib.h> #include <stdio.h> #define up_to_down(uuu) (downdemo_t *)(uuu->beg) #define __plc__ typedef struct updemo_s{uint8_t *head;uint8_t *beg;uint8_t *end; }updemo_t; typedef struct do…