本文对神经网络各层特征图可视化的过程进行运行示例,方便大家使用,有助于更好的理解深度学习的过程,尤其是每层的结果。
神经网络各层特征图可视化的好处和特点如下:
可视化过程可以了解网络对图像像素的权重分布,可以了解网络对图像特征的提取过程,还可以剔除对特征表达无关紧要的像素,缩短网络训练时间,减少模型复杂度。
可以将复杂多维数据以图像形式呈现,帮助科研人员更好的理解数据特征,同时可以建立定量化的图像与病理切片的对应关系,为后续病理研究提供可视化依据。
本示例以一幅图象经过一层卷积输出为例进行。在自己运行时可以多加几层卷积和调整相应的输出通道等操作。
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
import math
from torchvision import transforms
# 定义一个卷积层
conv_layer = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, stride=2, padding=1)
# 输入图像(随机生成)
image = Image.open("../11111.jpg")
#input_image = torch.randn(1, 3, 224, 224)
transform = transforms.Compose([
transforms.ToTensor()
])
# 对图像应用转换操作
input_image= transform(image)
input_image = input_image.unsqueeze(0)
# 通过卷积层获取特征图
feature_map = conv_layer(input_image)
batch, channels, height, width = feature_map.shape
blocks = torch.chunk(feature_map[0].cpu(), channels, dim=0)
n = min(32, channels) # number of plots
fig, ax = plt.subplots(math.ceil(n / 8), 8, tight_layout=True) # 8 rows x n/8 cols
ax = ax.ravel()
plt.subplots_adjust(wspace=0.05, hspace=0.05)
for i in range(n):
ax[i].imshow(blocks[i].squeeze().detach().numpy()) # cmap='gray'
ax[i].axis('off')
plt.savefig('./tezhengtu.jpg', dpi=300, bbox_inches='tight')
plt.show()
plt.close()
代码解释:
步骤1 定义一个卷积层(Convolutional Layer):conv_layer,该卷积层有3个输入通道,64个输出通道, kernel size为3x3,步长为2,填充为1。
步骤2输入图像:这里使用了一个真实的图像文件路径"…/11111.jpg"作为输入图像。你可以替换为你自己的图像文件路径。
步骤3定义一个图像转换操作(transform)序列,用于将输入图像转换为PyTorch需要的张量格式。这里仅包含一个操作:转换为张量(ToTensor)。
步骤4对输入图像应用转换操作:通过transform(image)将图像转换为PyTorch张量,然后通过unsqueeze(0)增加一个额外的维度(batch维度),使得输入图像的形状变为(1, 3, H, W)。
步骤5通过卷积层获取特征图:将输入图像传递给卷积层conv_layer,得到特征图feature_map。
步骤6将特征图转换为numpy数组:为了可视化,需要将特征图从PyTorch张量转换为numpy数组。这里使用了detach().numpy()方法来实现转换。
步骤7获取特征图的一些属性:使用shape属性获取特征图的batch大小、通道数、高度和宽度。
步骤8分块显示特征图:为了在图像中显示特征图,需要将特征图分块处理。这里使用torch.chunk方法将特征图按照通道数分割成若干块,每一块代表一个通道的输出。然后使用Matplotlib库中的subplot功能将分块后的图像显示在画布上。具体地,这段代码将分块后的图像显示在一个8x8的画布上,每个小图的尺寸为256x256像素(因为最后一块图像可能不足8个通道,所以使用了最少的小图数量)。最后使用savefig方法保存图像到文件,并关闭Matplotlib的画布。
输入的图像为:
经过一层卷积之后的特征图为: