深度学习图像修复算法 - opencv python 机器视觉 计算机竞赛

文章目录

  • 0 前言
  • 2 什么是图像内容填充修复
  • 3 原理分析
    • 3.1 第一步:将图像理解为一个概率分布的样本
    • 3.2 补全图像
  • 3.3 快速生成假图像
    • 3.4 生成对抗网络(Generative Adversarial Net, GAN) 的架构
    • 3.5 使用G(z)生成伪图像
  • 4 在Tensorflow上构建DCGANs
  • 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学图像修复算法

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 什么是图像内容填充修复

内容识别填充(译注: Content-aware fill ,是 photoshop
的一个功能)是一个强大的工具,设计师和摄影师可以用它来填充图片中不想要的部分或者缺失的部分。在填充图片的缺失或损坏的部分时,图像补全和修复是两种密切相关的技术。有很多方法可以实现内容识别填充,图像补全和修复。

  • 首先我们将图像理解为一个概率分布的样本。
  • 基于这种理解,学*如何生成伪图片。
  • 然后我们找到最适合填充回去的伪图片。

在这里插入图片描述

自动删除不需要的部分(海滩上的人)
在这里插入图片描述

最经典的人脸补充

补充前:

在这里插入图片描述

补充后:
在这里插入图片描述

3 原理分析

3.1 第一步:将图像理解为一个概率分布的样本

你是怎样补全缺失信息的呢?

在上面的例子中,想象你正在构造一个可以填充缺失部分的系统。你会怎么做呢?你觉得人类大脑是怎么做的呢?你使用了什么样的信息呢?

在博文中,我们会关注两种信息:

语境信息:你可以通过周围的像素来推测缺失像素的信息。

感知信息:你会用“正常”的部分来填充,比如你在现实生活中或其它图片上看到的样子。
两者都很重要。没有语境信息,你怎么知道填充哪一个进去?没有感知信息,通过同样的上下文可以生成无数种可能。有些机器学*系统看起来“正常”的图片,人类看起来可能不太正常。
如果有一种确切的、直观的算法,可以捕获前文图像补全步骤介绍中提到的两种属性,那就再好不过了。对于特定的情况,构造这样的算法是可行的。但是没有一般的方法。目前最好的解决方案是通过统计和机器学习来得到一个类似的技术。

在这里插入图片描述

从这个分布中采样,就可以得到一些数据。需要搞清楚的是PDF和样本之间的联系。

在这里插入图片描述

从正态分布中的采样

在这里插入图片描述
2维图像的PDF和采样。 PDF 用等高线图表示,样本点画在上面。

3.2 补全图像

首先考虑多变量正态分布, 以求得到一些启发。给定 x=1 , 那么 y 最可能的值是什么?我们可以固定x的值,然后找到使PDF最大的 y。
在这里插入图片描述
在多维正态分布中,给定x,得到最大可能的y

这个概念可以很自然地推广到图像概率分布。我们已知一些值,希望补全缺失值。这可以简单理解成一个最大化问题。我们搜索所有可能的缺失值,用于补全的图像就是可能性最大的值。
从正态分布的样本来看,只通过样本,我们就可以得出PDF。只需挑选你喜欢的 统计模型, 然后拟合数据即可。
然而,我们实际上并没有使用这种方法。对于简单分布来说,PDF很容易得出来。但是对于更复杂的图像分布来说,就十分困难,难以处理。之所以复杂,一部分原因是复杂的条件依赖:一个像素的值依赖于图像中其它像素的值。另外,最大化一个一般的PDF是一个非常困难和棘手的非凸优化问题。

3.3 快速生成假图像

在未知概率分布情况下,学习生成新样本

除了学 如何计算PDF之外,统计学中另一个成熟的想法是学 怎样用 生成模型
生成新的(随机)样本。生成模型一般很难训练和处理,但是后来深度学*社区在这个领域有了一个惊人的突破。Yann LeCun 在这篇 Quora
回答中对如何进行生成模型的训练进行了一番精彩的论述,并将它称为机器学习领域10年来最有意思的想法。

3.4 生成对抗网络(Generative Adversarial Net, GAN) 的架构

使用微步长卷积,对图像进行上采样

在这里插入图片描述
现在我们有了微步长卷积结构,可以得到G(z)的表达,以一个向量z∼pz 作为输入,输出一张 64x64x3 的RGB图像。

在这里插入图片描述

3.5 使用G(z)生成伪图像

基于DCGAN的人脸代数运算 DCGAN论文 。

在这里插入图片描述

4 在Tensorflow上构建DCGANs

部分代码:

def generator(self, z):
    self.z_, self.h0_w, self.h0_b = linear(z, self.gf_dim*8*4*4, 'g_h0_lin', with_w=True)

    self.h0 = tf.reshape(self.z_, [-1, 4, 4, self.gf_dim * 8])
    h0 = tf.nn.relu(self.g_bn0(self.h0))

    self.h1, self.h1_w, self.h1_b = conv2d_transpose(h0,
        [self.batch_size, 8, 8, self.gf_dim*4], name='g_h1', with_w=True)
    h1 = tf.nn.relu(self.g_bn1(self.h1))

    h2, self.h2_w, self.h2_b = conv2d_transpose(h1,
        [self.batch_size, 16, 16, self.gf_dim*2], name='g_h2', with_w=True)
    h2 = tf.nn.relu(self.g_bn2(h2))

    h3, self.h3_w, self.h3_b = conv2d_transpose(h2,
        [self.batch_size, 32, 32, self.gf_dim*1], name='g_h3', with_w=True)
    h3 = tf.nn.relu(self.g_bn3(h3))

    h4, self.h4_w, self.h4_b = conv2d_transpose(h3,
        [self.batch_size, 64, 64, 3], name='g_h4', with_w=True)

    return tf.nn.tanh(h4)

def discriminator(self, image, reuse=False):
    if reuse:
        tf.get_variable_scope().reuse_variables()

    h0 = lrelu(conv2d(image, self.df_dim, name='d_h0_conv'))
    h1 = lrelu(self.d_bn1(conv2d(h0, self.df_dim*2, name='d_h1_conv')))
    h2 = lrelu(self.d_bn2(conv2d(h1, self.df_dim*4, name='d_h2_conv')))
    h3 = lrelu(self.d_bn3(conv2d(h2, self.df_dim*8, name='d_h3_conv')))
    h4 = linear(tf.reshape(h3, [-1, 8192]), 1, 'd_h3_lin')

    return tf.nn.sigmoid(h4), h4

当我们初始化这个类的时候,将要用到这两个函数来构建模型。我们需要两个判别器,它们共享(复用)参数。一个用于来自数据分布的小批图像,另一个用于生成器生成的小批图像。

self.G = self.generator(self.z)
self.D, self.D_logits = self.discriminator(self.images)
self.D_, self.D_logits_ = self.discriminator(self.G, reuse=True)

接下来,我们定义损失函数。这里我们不用求和,而是用D的预测值和真实值之间的交叉熵(cross
entropy),因为它更好用。判别器希望对所有“真”数据的预测都是1,对所有生成器生成的“伪”数据的预测都是0。生成器希望判别器对两者的预测都是1 。

self.d_loss_real = tf.reduce_mean(
    tf.nn.sigmoid_cross_entropy_with_logits(self.D_logits,
                                            tf.ones_like(self.D)))
self.d_loss_fake = tf.reduce_mean(
    tf.nn.sigmoid_cross_entropy_with_logits(self.D_logits_,
                                            tf.zeros_like(self.D_)))
self.g_loss = tf.reduce_mean(
    tf.nn.sigmoid_cross_entropy_with_logits(self.D_logits_,
                                            tf.ones_like(self.D_)))
self.d_loss = self.d_loss_real + self.d_loss_fake

下面我们遍历数据。每一次迭代,我们采样一个小批数据,然后使用优化器来更新网络。有趣的是,如果G只更新一次,鉴别器的损失不会变成0。另外,我认为最后调用
d_loss_fake 和 d_loss_real 进行了一些不必要的计算, 因为这些值在 d_optim 和 g_optim 中已经计算过了。
作为Tensorflow 的一个联系,你可以试着优化这一部分,并发送PR到原始的repo。



    for epoch in xrange(config.epoch):
        ...
        for idx in xrange(0, batch_idxs):
            batch_images = ...
    
            batch_z = np.random.uniform(-1, 1, [config.batch_size, self.z_dim]) \
                        .astype(np.float32)
    
            # Update D network
            _, summary_str = self.sess.run([d_optim, self.d_sum],
                feed_dict={ self.images: batch_images, self.z: batch_z })


            # Update G network
            _, summary_str = self.sess.run([g_optim, self.g_sum],
                feed_dict={ self.z: batch_z })


            # Run g_optim twice to make sure that d_loss does not go to zero (different from paper)
            _, summary_str = self.sess.run([g_optim, self.g_sum],
                feed_dict={ self.z: batch_z })


            errD_fake = self.d_loss_fake.eval({self.z: batch_z})
            errD_real = self.d_loss_real.eval({self.images: batch_images})
            errG = self.g_loss.eval({self.z: batch_z})


最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/178573.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于SSM的旅游管理系统设计与实现

末尾获取源码 开发语言:Java Java开发工具:JDK1.8 后端框架:SSM 前端:采用JSP技术开发 数据库:MySQL5.7和Navicat管理工具结合 服务器:Tomcat8.5 开发软件:IDEA / Eclipse 是否Maven项目&#x…

如何用java的虚拟线程连接数据库

我觉得这个很简单 首先确保你idea支持jdk21. 然后把idea编译成的目标字节码设置为21版本的 然后编写代码。 创建虚拟线程的方式有: Runnable runnable () -> {System.out.println("Hello, world!"); };// 创建虚拟线程 Thread virtualThread Thre…

likeshop单商户商城系统 任意文件上传漏洞复现

0x01 产品简介 likeshop单商户标准商城系统适用于B2C、单商户、自营商城场景。完美契合私域流量变现闭环交易使用。 系统拥有丰富的营销玩法,强大的分销能力,支持电子面单和小程序直播等功能。无论运营还是二开都是性价比极高的100%开源商城系统。 0x02…

【OpenCV实现图像:使用OpenCV生成拼图效果】

文章目录 概要通用配置不考虑间隔代码实现考虑间隔代码实现小结 概要 概要: 拼图效果是一种将图像切割为相邻正方形并重新排列的艺术效果。在生成拼图效果时,可以考虑不同的模式,包括是否考虑间隔和如何处理不能整除的部分。 不考虑间隔&a…

java代码调用twitter-api用例实战

一、申请twitter开发者账号 首先先申请twitter开发者免费的API,要填写申请的内容,放心大胆地写,申请完,会提供免费的API接口。 以下是我申请到的三个免费API 申请完开始进行测试调用。 读官方文档账户认证那块:https…

Python 2.7 在 Debian 服务器上获取 URL 时的 SSL 验证失败问题与解决方案

在使用Python的requests库从Debian稳定服务器上获取简单URL时,遇到了SSL证书错误。 根据用户的问题描述,您遇到了SSL证书验证失败的问题。 要解决这个问题,您可以采取以下步骤: 1. 升级到Python 2.7的最新版本: 首…

基于SSM的课程资源管理系统

末尾获取源码 开发语言:Java Java开发工具:JDK1.8 后端框架:SSM 前端:采用JSP技术开发 数据库:MySQL5.7和Navicat管理工具结合 服务器:Tomcat8.5 开发软件:IDEA / Eclipse 是否Maven项目&#x…

5-6求1-20的阶乘和

#include<stdio.h> //求阶乘 int main(){int n;double sum0;//求和&#xff1a;一点一点加int t1;for (n1;n<15;n){tt*n;sumsumt;}printf("结果是&#xff1a;%22.15e \n",sum);return 0; }为啥最后是%22.15e呢&#xff1f; 因为这个求和的结果太大了 所以转…

git clone慢的解决办法

在网站 https://www.ipaddress.com/ 分别搜索&#xff1a; github.global.ssl.fastly.net github.com 得到ip&#xff1a; 打开hosts文件 sudo vim /etc/hosts 在hosts文件末尾添加 140.82.114.3 github.com 151.101.1.194 github.global-ssl.fastly.net 151.101.65.194 g…

图神经网络与图注意力网络

随着计算机行业和互联网时代的不断发展与进步&#xff0c;图神经网络已经成为人工智能和大数据的重要研究领域。图神经网络是对相邻节点间信息的传播和聚合的重要技术&#xff0c;可以有效地将深度学习的理念应用于非欧几里德空间的数据上。本期推送围绕图神经网络与图注意力网…

java基础-集合

1、集合 在java中&#xff0c;集合&#xff08;Collection&#xff09;指的是一组数据容器&#xff0c;它可以存储多个对象&#xff0c;并且允许用户通过一些方法来访问与操作这些对象。j 集合的实现原理都基于数据结构和算法&#xff0c;如下&#xff1a; 数据结构&#xff1…

52.seata分布式事务

目录 1.事务的四大特性。 2.分布式服务的事务问题。 3.seata。 3.1理论基础。 3.1.1CAP定理。 3.1.2BASE理论。 3.2初识Seata。 3.2.1Seata的架构。 3.2.2部署TC服务。 3.2.3微服务集成Seata。 3.3 seata提供的四种分布式事务解决方案。 3.3.1 XA模式。 3.3.1.1 X…

摩尔定律,梅特卡夫定律,吉尔德定律

信息系统的三大定律(摩尔定律&#xff0c;梅特卡夫定律&#xff0c;吉尔德定律)有一个清晰的视角&#xff1a; 信息系统不是左边的生产消费系统&#xff0c;而是右边的交易系统&#xff0c;交易系统与生产消费典型的区别在于信息交易过程会产生新的信息&#xff0c;就像钱一样…

jvs-智能bi(自助式数据分析)11.21更新功能上线

jvs智能bi更新功能 新增: 1.字段设置节点新增自定义时间格式功能&#xff1b; 自定义功能允许用户根据需要自定义日期和时间字段的显示格式&#xff0c;为用户提供了更大的灵活性和便利性 2.图表时间搜索条件新增向下兼容模式&#xff1b; 时间搜索条件的向下兼容模式允许用…

【wireshark】基础学习

TOC 查询tcp tcp 查询tcp握手请求的代码 tcp.flags.ack 0 确定tcp握手成功的代码 tcp.flags.ack 1 确定tcp连接请求的代码 tcp.flags.ack 0 and tcp.flags.syn 1 3次握手后确定发送成功的查询 tcp.flags.fin 1 查询某IP对外发送的数据 ip.src_host 192.168.73.134 查询某…

Ps:背景橡皮擦工具抠图实例

背景橡皮擦工具 Background Eraser Tool由于是一个破坏性的工具&#xff08;直接删除像素&#xff09;而少被人使用。 其实&#xff0c;它不仅是一个功能强大的抠图工具&#xff0c;也是可以转换为非破坏性运用的。 原图&#xff08;注&#xff1a;图片来自网络&#xff09; 效…

【尚硅谷】第06章:随堂复习与企业真题(面向对象-基础)

第06章&#xff1a;随堂复习与企业真题&#xff08;面向对象-基础&#xff09; 一、随堂复习 1. &#xff08;了解&#xff09;面向过程 vs 面向对象 不管是面向过程、面向对象&#xff0c;都是程序设计的思路。面向过程&#xff1a;以函数为基本单位&#xff0c;适合解决简单…

QGIS文章五——对遥感影像进行土地类型分类—监督分类(dzetsaka : classification tool)...

dzetsaka classification tool是QGIS的强大分类插件&#xff0c;目前主要提供了高斯混合模型分类器、Random Forest、KNN和SVM四种分类器模型&#xff0c;相比于SCP(Semi-Automatic Classification)&#xff0c;他的一个特点就是功能专一&#xff0c;操作简单。 从十一月开始一…

深度学习 loss 是nan的可能原因

1 loss 损失值非常大&#xff0c;超过了浮点数的范围&#xff0c;所以表示为overflow 状态下的男。 解决办法&#xff1a; 减小学习率&#xff0c;观察loss值是不是还是nan 在将数据输入模型前&#xff0c;进行恰当的归一化 缩放 2 loss 的计算中存在除以0&#xff0c; log(0…

ios qt开发要点

目前关于ios qt的开发资料比较少&#xff0c;这里整理了几个比较重要的开发要点&#xff0c;基于MacOS14 Xcode15 Qt15.5 cmake iphone真机。 cmake报错&#xff0c;报错信息如下 CMake Error at /Users/user/Qt/5.15.5/ios/lib/cmake/Qt5Core/Qt5CoreConfig.cmake:91 (m…