基于鹈鹕算法优化概率神经网络PNN的分类预测 - 附代码

基于鹈鹕算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于鹈鹕算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于鹈鹕优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用鹈鹕算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于鹈鹕优化的PNN网络

鹈鹕算法原理请参考:https://blog.csdn.net/u011835903/article/details/124809854

利用鹈鹕算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

鹈鹕参数设置如下:

%% 鹈鹕参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从结果来看,鹈鹕-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/177866.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux文件

目录 一、基本概念 二、研究进程和被打开文件的关系 (一)w方式 (二)a方式 三、认识系统接口,操作文件 (一)认识文件描述符 (二)举例 (三)…

分类预测 | Matlab实现基于PSO-PNN粒子群算法优化概率神经网络的数据分类预测

分类预测 | Matlab实现基于PSO-PNN粒子群算法优化概率神经网络的数据分类预测 目录 分类预测 | Matlab实现基于PSO-PNN粒子群算法优化概率神经网络的数据分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.Matlab实现基于PSO-PNN粒子群算法优化概率神经网络的数据…

基于材料生成算法优化概率神经网络PNN的分类预测 - 附代码

基于材料生成算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于材料生成算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于材料生成优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神…

Java基础(程序控制结构篇)

Java的程序控制结构与C语言一致,分为顺序结构、选择结构(分支结构)和循环结构三种。 一、顺序结构 如果程序不包含选择结构或是循环结构,那么程序中的语句就是顺序的逐条执行,这就是顺序结构。 import java.util.Sc…

linux之进程地址空间

文章目录 1.进程地址空间回顾1.1进程地址空间划分1.2验证进程地址空间划分1.简单划分2.完整划分 2.初探进程地址空间2.1初看现象2.2Makefile的简便写法 3.进程地址空间详解3.1地址空间是什么?3.2地址空间的设计/由来3.3空间区域划分3.4如何理解地址空间?3.5解释3.2的&#x1…

在中国企业出海的大浪潮下,亚马逊云科技提供遍及全球的基础设施和技术支持

中国技术出海是中国企业更高层次更高质量的全球化。在人类文明发展史上,凝聚中国古人智慧结晶的造纸术、印刷术、火药、指南针等,曾为中国技术出海写下过浓墨重彩的一笔。在今天,如金山办公、店匠科技、ADVANCE.AI等公司又以技术立业&#xf…

最受欢迎的猫罐头有那些?精选的5款热门猫罐头推荐!

新手养猫很容易陷入疯狂购买的模式,但有些品牌真的不能乱买!现在的大环境不太好,我们需要学会控制自己的消费欲望,把钱花在刀刃上!现在宠物市场真的很内卷,很多品牌都在比拼产品的数据和营养成分。很多铲屎…

如何查找批量企业的联系方式?

​我们都知道,企业的联系方式在企业的年报中就能找到,但是年报上的电话真的是你要找的吗? 很多企业年报上留的是第三方代记账公司,或者是其他没用的号码,这对于做B端业务的企业来说是不够精准的。 市面上有很多做企业…

redis运维(十六) 有序集合

一 有序集合 把握一点: 各种redis 命令都提供各种语言对应的API 接口,后续API是关键 ① 概念 1、sorted set --> 有序集合2、redis有序集合也是集合类型的一部分,所以它保留了集合中元素不能重复的特性3、但是不同的是,有序集合给每个元素多设置…

[Docker]九.Docker compose讲解

docker-compose 是 docker 官方的一个开源项目,可以实现对 docker 容器集群的快速编排, docker-compose 通过一个 配置文件 来管理多个 Docker 容器,在配置文件中,所有的容器通过 services 来定义,然后使用 docker-compose脚本 来 启动&am…

10、信息打点——APP小程序篇抓包封包XP框架反编译资产提取

APP信息搜集思路 外在——抓包封包——资产安全测试 抓包(Fiddle&茶杯&burp)封包(封包监听工具),提取资源信息 资产收集——资源提取——ICO、MAD、hash——FOFA等网络测绘进行资产搜集 外在——功能逻辑 内在…

pikachu靶场PHP反序列化漏洞

pikachu靶场PHP反序列化漏洞 源码分析 查看源代码 class S{var $test "pikachu";function __construct(){echo $this->test;} }// O:1:"S":1:{s:4:"test";s:29:"<script>alert(xss)</script>";} $html; if(isset($_PO…

pikachu_php反序列化

pikachu_php反序列化 源代码 class S{var $test "pikachu";function __construct(){echo $this->test;} }//O:1:"S":1:{s:4:"test";s:29:"<script>alert(xss)</script>";} $html; if(isset($_POST[o])){$s $_POST[…

优先级队列(priority_queue)

文章目录 优先级队列的定义定义&#xff1a;接口头文件优先队列和堆的关系使用&#xff1a;排序的规则容器 仿函数应用 队列存指针问题&#xff1a; 优先级队列的定义 定义&#xff1a; 黄色部分是仿函数 接口 头文件 这里不需要包含其他的头文件只需要使用队列的头文件就可以…

SpringBoot监听器解析

监听器模式介绍 监听器模式的要素 事件监听器广播器触发机制 SpringBoot监听器实现 系统事件 事件发送顺序 监听器注册 监听器注册和初始化器注册流程类似 监听器触发机制 获取监听器列表核心流程: 通用触发条件: 自定义监听器实现 实现方式1 实现监听器接口: Order(1) …

SPSS系统聚类

前言&#xff1a; 本专栏参考教材为《SPSS22.0从入门到精通》&#xff0c;由于软件版本原因&#xff0c;部分内容有所改变&#xff0c;为适应软件版本的变化&#xff0c;特此创作此专栏便于大家学习。本专栏使用软件为&#xff1a;SPSS25.0 本专栏所有的数据文件请点击此链接下…

基于python人脸性别年龄检测系统-深度学习项目

欢迎大家点赞、收藏、关注、评论啦 &#xff0c;由于篇幅有限&#xff0c;只展示了部分核心代码。 文章目录 一项目简介简介技术组成1. OpenCV2. Dlib3. TensorFlow 和 Keras 功能流程 二、功能三、系统四. 总结 一项目简介 # Python 人脸性别年龄检测系统介绍 简介 该系统基…

VirtualBox配置共享文件夹,如果你一直安装增强功能失败,又没有尝试过改内核版本。。。

1 背景 想设置电脑本地和virtualbox虚拟机之间的共享文件夹&#xff0c;这样在电脑本地对共享文件的修改&#xff0c;就可以在虚拟机中被感知。 如果想配置共享文件夹&#xff0c;前提是必须安装virtualbox的增强功能。 我的虚拟机是7.0.10版本 安装的centOS8.5 可以看我之前的…

一篇文章搞懂WPF动画的使用技巧

WPF 动画系统提供了丰富的功能&#xff0c;用于为 UI 元素创建流畅的动态效果。动画可以应用于任何可用于渲染的属性&#xff0c;比如位置、颜色、大小等。在 WPF 中&#xff0c;动画是通过更改随时间变化的属性来实现的。 WPF动画基本用法 例如实现如下的动画效果&#xff1…

Kubernetes+Gitlab+Jenkins+ArgoCD多集群部署

KubernetesGitlabJenkinsArgoCD多集群部署 文章目录 KubernetesGitlabJenkinsArgoCD多集群部署1. KubernetesGitlabJenkinsArgoCD多集群部署2. 添加WebHooks自动触发3. Jenkins-构建-执行Shell4. 制作镜像及修改Yaml文件4.1 Dockerfile4.2 Build-Shell 5.自动部署Demo测试5.1 推…