9.3 Windows驱动开发:内核解析PE结构节表

在笔者上一篇文章《内核解析PE结构导出表》介绍了如何解析内存导出表结构,本章将继续延申实现解析PE结构的PE头,PE节表等数据,总体而言内核中解析PE结构与应用层没什么不同,在上一篇文章中LyShark封装实现了KernelMapFile()内存映射函数,在之后的章节中这个函数会被多次用到,为了减少代码冗余,后期文章只列出重要部分,读者可以自行去前面的文章中寻找特定的片段。

PE结构(Portable Executable Structure)是Windows操作系统用于执行可执行文件和动态链接库(DLL)的标准格式。节表(Section Table)是PE结构中的一个部分,它记录了可执行文件或DLL中每个区域的详细信息,例如代码、数据、资源等。

Windows NT 系统中可执行文件使用微软设计的新的文件格式,PE文件的基本结构如下图所示:

在PE文件中,代码,已初始化的数据,资源和重定位信息等数据被按照属性分类放到不同的Section(节区/或简称为节)中,而每个节区的属性和位置等信息用一个IMAGE_SECTION_HEADER结构来描述,所有的IMAGE_SECTION_HEADER结构组成了一个节表(Section Table),节表数据在PE文件中被放在所有节数据的前面.

上面PE结构图中可知PE文件的开头部分包括了一个标准的DOS可执行文件结构,这看上去有些奇怪,但是这对于可执行程序的向下兼容性来说却是不可缺少的,当然现在已经基本不会出现纯DOS程序了,现在来说这个IMAGE_DOS_HEADER结构纯粹是历史遗留问题。

9.1.1 DOS头结构解析

PE文件中的DOS部分由MZ格式的文件头和可执行代码部分组成,可执行代码被称为DOS块(DOS stub),MZ格式的文件头由IMAGE_DOS_HEADER结构定义,在C语言头文件winnt.h中有对这个DOS结构详细定义,如下所示:

typedef struct _IMAGE_DOS_HEADER { 
    WORD   e_magic;                     // DOS的头部
    WORD   e_cblp;                      // Bytes on last page of file
    WORD   e_cp;                        // Pages in file
    WORD   e_crlc;                      // Relocations
    WORD   e_cparhdr;                   // Size of header in paragraphs
    WORD   e_minalloc;                  // Minimum extra paragraphs needed
    WORD   e_maxalloc;                  // Maximum extra paragraphs needed
    WORD   e_ss;                        // Initial (relative) SS value
    WORD   e_sp;                        // Initial SP value
    WORD   e_csum;                      // Checksum
    WORD   e_ip;                        // Initial IP value
    WORD   e_cs;                        // Initial (relative) CS value
    WORD   e_lfarlc;                    // File address of relocation table
    WORD   e_ovno;                      // Overlay number
    WORD   e_res[4];                    // Reserved words
    WORD   e_oemid;                     // OEM identifier (for e_oeminfo)
    WORD   e_oeminfo;                   // OEM information; e_oemid specific
    WORD   e_res2[10];                  // Reserved words
    LONG   e_lfanew;                    // 指向了PE文件的开头(重要)
  } IMAGE_DOS_HEADER, *PIMAGE_DOS_HEADER;

在DOS文件头中,第一个字段e_magic被定义为MZ,标志着DOS文件的开头部分,最后一个字段e_lfanew则指明了PE文件的开头位置,现在来说除了第一个字段和最后一个字段有些用处,其他字段几乎已经废弃了,这里附上读取DOS头的代码。

void DisplayDOSHeadInfo(HANDLE ImageBase)
{
    PIMAGE_DOS_HEADER pDosHead = NULL;
    pDosHead = (PIMAGE_DOS_HEADER)ImageBase;

    printf("DOS头:        %x\n", pDosHead->e_magic);
    printf("文件地址:     %x\n", pDosHead->e_lfarlc);
    printf("PE结构偏移:   %x\n", pDosHead->e_lfanew);
}

9.1.2 PE头结构解析

从DOS文件头的e_lfanew字段向下偏移003CH的位置,就是真正的PE文件头的位置,该文件头是由IMAGE_NT_HEADERS结构定义的,定义结构如下:

typedef struct _IMAGE_NT_HEADERS {
    DWORD Signature;                   // PE文件标识字符
    IMAGE_FILE_HEADER FileHeader;
    IMAGE_OPTIONAL_HEADER32 OptionalHeader;
} IMAGE_NT_HEADERS32, *PIMAGE_NT_HEADERS32;

如上PE文件头的第一个DWORD是一个标志,默认情况下它被定义为00004550h也就是P,E两个字符另外加上两个零,而大部分的文件属性由标志后面的IMAGE_FILE_HEADERIMAGE_OPTIONAL_HEADER32结构来定义,我们继续跟进IMAGE_FILE_HEADER这个结构:

typedef struct _IMAGE_FILE_HEADER {
    WORD    Machine;                  // 运行平台
    WORD    NumberOfSections;         // 文件的节数目
    DWORD   TimeDateStamp;            // 文件创建日期和时间
    DWORD   PointerToSymbolTable;     // 指向符号表(用于调试)
    DWORD   NumberOfSymbols;          // 符号表中的符号数量
    WORD    SizeOfOptionalHeader;     // IMAGE_OPTIONAL_HANDLER32结构的长度
    WORD    Characteristics;          // 文件的属性 exe=010fh dll=210eh
} IMAGE_FILE_HEADER, *PIMAGE_FILE_HEADER;

继续跟进 IMAGE_OPTIONAL_HEADER32 结构,该结构体中的数据就丰富了,重要的结构说明经备注好了:

typedef struct _IMAGE_OPTIONAL_HEADER {
    WORD    Magic;
    BYTE    MajorLinkerVersion;           // 连接器版本
    BYTE    MinorLinkerVersion;
    DWORD   SizeOfCode;                   // 所有包含代码节的总大小
    DWORD   SizeOfInitializedData;        // 所有已初始化数据的节总大小
    DWORD   SizeOfUninitializedData;      // 所有未初始化数据的节总大小
    DWORD   AddressOfEntryPoint;          // 程序执行入口RVA
    DWORD   BaseOfCode;                   // 代码节的起始RVA
    DWORD   BaseOfData;                   // 数据节的起始RVA
    DWORD   ImageBase;                    // 程序镜像基地址
    DWORD   SectionAlignment;             // 内存中节的对其粒度
    DWORD   FileAlignment;                // 文件中节的对其粒度
    WORD    MajorOperatingSystemVersion;  // 操作系统主版本号
    WORD    MinorOperatingSystemVersion;  // 操作系统副版本号
    WORD    MajorImageVersion;            // 可运行于操作系统的最小版本号
    WORD    MinorImageVersion;
    WORD    MajorSubsystemVersion;        // 可运行于操作系统的最小子版本号
    WORD    MinorSubsystemVersion;
    DWORD   Win32VersionValue;
    DWORD   SizeOfImage;                  // 内存中整个PE映像尺寸
    DWORD   SizeOfHeaders;                // 所有头加节表的大小
    DWORD   CheckSum;
    WORD    Subsystem;
    WORD    DllCharacteristics;
    DWORD   SizeOfStackReserve;           // 初始化时堆栈大小
    DWORD   SizeOfStackCommit;
    DWORD   SizeOfHeapReserve;
    DWORD   SizeOfHeapCommit;
    DWORD   LoaderFlags;
    DWORD   NumberOfRvaAndSizes;          // 数据目录的结构数量
    IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES];
} IMAGE_OPTIONAL_HEADER32, *PIMAGE_OPTIONAL_HEADER32;

IMAGE_DATA_DIRECTORY数据目录列表,它由16个相同的IMAGE_DATA_DIRECTORY结构组成,这16个数据目录结构定义很简单仅仅指出了某种数据的位置和长度,定义如下:

typedef struct _IMAGE_DATA_DIRECTORY {
    DWORD   VirtualAddress;      // 数据起始RVA
    DWORD   Size;                // 数据块的长度
} IMAGE_DATA_DIRECTORY, *PIMAGE_DATA_DIRECTORY;

上方的结构就是PE文件的重要结构,接下来将通过编程读取出PE文件的开头相关数据,读取这些结构也非常简单代码如下所示。

NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
{
    DbgPrint("hello lyshark \n");

    NTSTATUS status = STATUS_SUCCESS;
    HANDLE hFile = NULL;
    HANDLE hSection = NULL;
    PVOID pBaseAddress = NULL;
    UNICODE_STRING FileName = { 0 };

    // 初始化字符串
    RtlInitUnicodeString(&FileName, L"\\??\\C:\\Windows\\System32\\ntdll.dll");

    // 内存映射文件
    status = KernelMapFile(FileName, &hFile, &hSection, &pBaseAddress);
    if (!NT_SUCCESS(status))
    {
        return 0;
    }

    // 获取PE头数据集
    PIMAGE_DOS_HEADER pDosHeader = (PIMAGE_DOS_HEADER)pBaseAddress;
    PIMAGE_NT_HEADERS pNtHeaders = (PIMAGE_NT_HEADERS)((PUCHAR)pDosHeader + pDosHeader->e_lfanew);
    PIMAGE_FILE_HEADER pFileHeader = &pNtHeaders->FileHeader;

    DbgPrint("运行平台:     %x\n", pFileHeader->Machine);
    DbgPrint("节区数目:     %x\n", pFileHeader->NumberOfSections);
    DbgPrint("时间标记:     %x\n", pFileHeader->TimeDateStamp);
    DbgPrint("可选头大小    %x\n", pFileHeader->SizeOfOptionalHeader);
    DbgPrint("文件特性:     %x\n", pFileHeader->Characteristics);
    DbgPrint("入口点:        %p\n", pNtHeaders->OptionalHeader.AddressOfEntryPoint);
    DbgPrint("镜像基址:      %p\n", pNtHeaders->OptionalHeader.ImageBase);
    DbgPrint("镜像大小:      %p\n", pNtHeaders->OptionalHeader.SizeOfImage);
    DbgPrint("代码基址:      %p\n", pNtHeaders->OptionalHeader.BaseOfCode);
    DbgPrint("区块对齐:      %p\n", pNtHeaders->OptionalHeader.SectionAlignment);
    DbgPrint("文件块对齐:    %p\n", pNtHeaders->OptionalHeader.FileAlignment);
    DbgPrint("子系统:        %x\n", pNtHeaders->OptionalHeader.Subsystem);
    DbgPrint("区段数目:      %d\n", pNtHeaders->FileHeader.NumberOfSections);
    DbgPrint("时间日期标志:  %x\n", pNtHeaders->FileHeader.TimeDateStamp);
    DbgPrint("首部大小:      %x\n", pNtHeaders->OptionalHeader.SizeOfHeaders);
    DbgPrint("特征值:        %x\n", pNtHeaders->FileHeader.Characteristics);
    DbgPrint("校验和:        %x\n", pNtHeaders->OptionalHeader.CheckSum);
    DbgPrint("可选头部大小:  %x\n", pNtHeaders->FileHeader.SizeOfOptionalHeader);
    DbgPrint("RVA 数及大小:  %x\n", pNtHeaders->OptionalHeader.NumberOfRvaAndSizes);

    ZwUnmapViewOfSection(NtCurrentProcess(), pBaseAddress);
    ZwClose(hSection);
    ZwClose(hFile);

    Driver->DriverUnload = UnDriver;
    return STATUS_SUCCESS;
}

运行如上这段代码,即可解析出ntdll.dll模块的核心内容,如下图所示;

接着来实现解析节表,PE文件中的所有节的属性定义都被定义在节表中,节表由一系列的IMAGE_SECTION_HEADER结构排列而成,每个结构邮过来描述一个节,节表总被存放在紧接在PE文件头的地方,也即是从PE文件头开始偏移为00f8h的位置处,如下是节表头部的定义。

typedef struct _IMAGE_SECTION_HEADER {
    BYTE    Name[IMAGE_SIZEOF_SHORT_NAME];
    union {
            DWORD   PhysicalAddress;
            DWORD   VirtualSize;           // 节区尺寸
    } Misc;
    DWORD   VirtualAddress;                // 节区RVA
    DWORD   SizeOfRawData;                 // 在文件中对齐后的尺寸
    DWORD   PointerToRawData;              // 在文件中的偏移
    DWORD   PointerToRelocations;          // 在OBJ文件中使用
    DWORD   PointerToLinenumbers;
    WORD    NumberOfRelocations;
    WORD    NumberOfLinenumbers;
    DWORD   Characteristics;               // 节区属性字段
} IMAGE_SECTION_HEADER, *PIMAGE_SECTION_HEADER;

其中,Name是该节的名称,VirtualAddress是该节在内存中的虚拟地址,SizeOfRawData是该节在文件中的大小,PointerToRawData是该节在文件中的偏移地址,Characteristics描述了该节的属性,例如是否可读、可写、可执行等。

节表通常位于PE结构的文件头后面,它包含了多个节表项,每个节表项描述了一个节的信息,包括:

  • 节名称:每个节都有一个名称,例如代码节的名称为.text,数据节的名称为.data等;
  • 节大小:该节的大小,以字节为单位;
  • 节的虚拟地址:该节在内存中的虚拟地址;
  • 节的物理地址:该节在文件中的偏移地址;
  • 节的属性:例如该节是否可读、可写、可执行等。

总的来说,节表记录了PE文件中每个区域的详细信息,这些信息对于可执行文件或DLL的加载和运行都非常重要。

解析节表也很容易实现,首先通过pFileHeader->NumberOfSections获取到节数量,然后循环解析直到所有节输出完成,这段代码实现如下所示。

NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
{
    DbgPrint("hello lyshark \n");

    NTSTATUS status = STATUS_SUCCESS;
    HANDLE hFile = NULL;
    HANDLE hSection = NULL;
    PVOID pBaseAddress = NULL;
    UNICODE_STRING FileName = { 0 };

    // 初始化字符串
    RtlInitUnicodeString(&FileName, L"\\??\\C:\\Windows\\System32\\ntdll.dll");

    // 内存映射文件
    status = KernelMapFile(FileName, &hFile, &hSection, &pBaseAddress);
    if (!NT_SUCCESS(status))
    {
        return 0;
    }

    // 获取PE头数据集
    PIMAGE_DOS_HEADER pDosHeader = (PIMAGE_DOS_HEADER)pBaseAddress;
    PIMAGE_NT_HEADERS pNtHeaders = (PIMAGE_NT_HEADERS)((PUCHAR)pDosHeader + pDosHeader->e_lfanew);
    PIMAGE_SECTION_HEADER pSection = IMAGE_FIRST_SECTION(pNtHeaders);
    PIMAGE_FILE_HEADER pFileHeader = &pNtHeaders->FileHeader;

    DWORD NumberOfSectinsCount = 0;

    // 获取区块数量
    NumberOfSectinsCount = pFileHeader->NumberOfSections;

    DWORD64 *difA = NULL;   // 虚拟地址开头
    DWORD64 *difS = NULL;   // 相对偏移(用于遍历)

    difA = ExAllocatePool(NonPagedPool, NumberOfSectinsCount*sizeof(DWORD64));
    difS = ExAllocatePool(NonPagedPool, NumberOfSectinsCount*sizeof(DWORD64));

    DbgPrint("节区名称 相对偏移\t虚拟大小\tRaw数据指针\tRaw数据大小\t节区属性\n");

    for (DWORD temp = 0; temp<NumberOfSectinsCount; temp++, pSection++)
    {
        DbgPrint("%10s\t 0x%x \t 0x%x \t 0x%x \t 0x%x \t 0x%x \n",
            pSection->Name, pSection->VirtualAddress, pSection->Misc.VirtualSize,
            pSection->PointerToRawData, pSection->SizeOfRawData, pSection->Characteristics);

        difA[temp] = pSection->VirtualAddress;
        difS[temp] = pSection->VirtualAddress - pSection->PointerToRawData;
    }

    ZwUnmapViewOfSection(NtCurrentProcess(), pBaseAddress);
    ZwClose(hSection);
    ZwClose(hFile);

    Driver->DriverUnload = UnDriver;
    return STATUS_SUCCESS;
}

运行驱动程序,即可输出ntdll.dll模块的节表信息,如下图;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/176284.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

priority_queue简单实现(优先级队列)(c++)

priority_queue priority_queue介绍逻辑实现框架调整算法adjust_up()adjust_down() 仿函数/比较函数仿函数特性 构造函数迭代器区间构造 完整优先级队列代码 priority_queue介绍 pri_que是一个容器适配器&#xff0c;它的底层是其他容器&#xff0c;并由这些容器再封装而来。类…

Win10之bandicam录音无声音问题(七十六)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 人生格言&#xff1a; 人生…

分布式进阶-链路追踪SpringCloudSleuth、Zipkin【实战篇】

一、前言 我们在使用微服务的时候&#xff0c;往往设计到各个微服务之间的调用&#xff0c;肯定会存在深度的调用链路&#xff0c;如果出现BUG或者异常&#xff0c;就会让问题定位和处理效率非常低。 有了Sleuth &#xff0c;就可以帮助我们记录、跟踪应用程序中的请求和操作。…

C++:哈希表的模拟实现

文章目录 哈希哈希冲突哈希函数 解决哈希冲突闭散列&#xff1a;开散列 哈希 在顺序结构和平衡树中&#xff0c;元素的Key和存储位置之间没有必然的联系&#xff0c;在进行查找的时候&#xff0c;要不断的进行比较&#xff0c;时间复杂度是O(N)或O(logN) 而有没有这样一种方案…

数据库基本操作-----数据库用户管理和授权

一、数据库用户管理 1&#xff0e;新建用户 CREATE USER 用户名来源地址 [IDENTIFIED BY [PASSWORD] 密码];‘用户名’&#xff1a;指定将创建的用户名 ‘来源地址’&#xff1a;指定新创建的用户可在哪些主机上登录&#xff0c;可使用IP地址、网段、主机名的形式&#xff0c…

linux下流媒体压力测试工具的使用

前言 因为领导要求做linux的推拉流时服务器压力测试&#xff0c;于是在网上找了找。一顿操作下来&#xff0c;发现很多软件盗用一款名为srs-bench的开源软件。 该代码仓库有详细的使用说明&#xff0c;而且可以在issues中找到可能会遇到的问题的解决办法 需要下载该仓库的源…

C# Onnx 百度PaddleSeg发布的实时人像抠图PP-MattingV2

目录 效果 模型信息 项目 代码 下载 效果 图片源自网络侵删 模型信息 Inputs ------------------------- name&#xff1a;img tensor&#xff1a;Float[1, 3, 480, 640] --------------------------------------------------------------- Outputs -----------------…

ZLMediaKit安装配置和推拉流

一、ZLMediaKit 库简介 ZLMediaKit 是一个基于 C11 的高性能运营级流媒体服务框架 官方写的项目特点&#xff1a; 基于 C11 开发&#xff0c;避免使用裸指针&#xff0c;代码稳定可靠&#xff0c;性能优越。 支持多种协议(RTSP/RTMP/HLS/HTTP-FLV/Websocket-FLV/GB28181/MP…

栈的生长方向不总是向下

据我了解&#xff0c;栈的生长方向向下&#xff0c;内存地址由高到低 测试 windows下&#xff1a; 符合上述情况 测试Linux下&#xff1a; 由此可见&#xff0c;栈在不同操作系统环境下&#xff0c;生长方向不总是向下

【Python】Vscode解决Python中制表符和空格混用导致的缩进问题

【Python】Vscode解决Python中制表符和空格混用导致的缩进问题 文章目录 【Python】Vscode解决Python中制表符和空格混用导致的缩进问题1. 问题来源2. 解决Reference 1. 问题来源 在python中使用缩进来进行代码块的分区&#xff0c;通常来说python的一个缩进包含4个空格&#…

不存在类型变量 A, T 的实例,使 Collector<T, A, List<T>> 符合 Supplier<R>

报错信息 原因: 不存在类型变量 A, T 的实例&#xff0c;使 Collector<T, A, List<\T>> 符合 Supplier<\R> 来源 测试Stream流的map方法&#xff0c;做算法习惯基本类型定义数组。 map方法:Stream API的一部分。允许以一种声明式的方式处理数据&#xff0c…

nodejs搭建本地服务

前端开发时想自己有个本地服务如下操作直接上干货 1.在桌面上直接在powerShell 输入命令行 npm install -g express-generator 然后 npm install -g express 然后新建一个例如server的文件夹 在powerShell执行 express myStudy -e 端口号默认是3000 直接在地址栏输入 http://…

Windows 7 连接 Windows 10 共享打印机,Windows 无法连接打印机,操作失败,错误为0x0000011b 的终极解决办法

Windows 7 连接 Windows 10 共享打印机出现错误 0x000001b&#xff0c;建议不要通过卸载Windows10系统的KB5005565安全更新来解决该问题&#xff08;犹如削足适履&#xff09;&#xff0c;正确的处理方法是手工添加一个本地打印机&#xff0c;本方法是安全可靠的。本文详述了该…

枚举 蓝桥oj DNA序列修正

题目详情&#xff1a; 简单翻译&#xff1a; 主要思路&#xff1a; 1 本题采用贪心思路&#xff0c;要使调整次数最少&#xff0c;就是尽量交换两个碱基对&#xff0c;而不是单个替换&#xff0c;因为本题已经说明只能每个碱基对只能交换一次&#xff0c;所以不考虑A与B交换再…

NC65 修改元数据字段长度

NC65 修改元数据字段长度&#xff0c;执行下面sql&#xff0c;执行完后需要重启NC服务才生效。 --属性 update md_property set attrlength 200 where name fphm and classidece96dd8-bdf8-4db3-a112-9d2f636d388f ;--列 update md_column set columnlength 200 where tab…

远程命令执行漏洞原理,以及防护绕过方式

一、背景 RCE(Remote Command /Code Execute) 远程代码执行漏洞 通过PHP代码注入、Java代码注入等方式连接程序中预留的后门或接口从而进行远程命令执行&#xff0c;达到对服务器的控制。 为什么会出现远程代码执行漏洞呢&#xff1f; Web应用有时需要调用执行一些系统命令函数…

YOLOv5 环境搭建

YOLOv5 环境搭建 flyfish 环境 Ubuntu20.04 驱动、CUDA Toolkit、cuDNN、PyTorch版本对应 1 NVIDIA驱动安装 在[附加驱动界]面安装驱动时&#xff0c;需要输入安全密码&#xff0c;需要记下&#xff0c;后面还需要输入这个密码 重启之后有的机器会出现 perform mok manage…

C2039 编译clr工程报错

在编译clr工程的时候出现错误 错误提示如下 出现上述情况的代码文件 crl头文件VideoPlayerCLRDLL.h 被crl引用的头文件PlayerEnterPort.h 在上述情况下&#xff0c;编译clr工程会编译opengl_player.h头文件中的内容&#xff0c;但在clr工程中不认识std::mutex&#xff0c…

设计模式篇---外观模式

文章目录 概念结构实例总结 概念 外观模式&#xff1a;为子系统中的一组接口提供一个统一的入口。外观模式定义了一个高层接口&#xff0c;这个接口使得这一子系统更加容易使用。 外观模式引入了一个新的外观类&#xff0c;它为多个业务类的调用提供了一个统一的入口。主要优点…

Leetcode—8.字符串转换整数(atoi)【中等】

2023每日刷题&#xff08;三十七&#xff09; Leetcode—8.字符串转换整数&#xff08;atoi&#xff09; 算法思想 参考k神的题解 实现代码 int myAtoi(char* s) {int len strlen(s);if(len 0) {return 0;}int boundary INT_MAX / 10;int i 0, ans 0;while(s[i] ) …