基于鹰栖息算法优化概率神经网络PNN的分类预测 - 附代码

基于鹰栖息算法优化概率神经网络PNN的分类预测 - 附代码

文章目录

  • 基于鹰栖息算法优化概率神经网络PNN的分类预测 - 附代码
    • 1.PNN网络概述
    • 2.变压器故障诊街系统相关背景
      • 2.1 模型建立
    • 3.基于鹰栖息优化的PNN网络
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:针对PNN神经网络的光滑因子选择问题,利用鹰栖息算法优化PNN神经网络的光滑因子的选择,并应用于变压器故障诊断。

1.PNN网络概述

概率神经网络( probabilistic neural networks , PNN )是 D. F. Specht 博士在 1 989 年首先提出的,是一种基于 Bayes 分类规则与 Parzen窗的概率密度面数估计方法发展而来的并行算 法。它是一类结胸简单、训练简洁、应用广泛的人工神经网络 。在实际应用中,尤其是在解决分类问题的应用中, PNN 的优势在于用线性学习算法来完成非线性学 习算法所傲的工作,同 时保持非线性算法的高精度等特性;这种网络对应的权值就是模式样本的分布,网络不需要训练,因而能够满足训练上实时处理的要求。

PNN 网络是由径向基函数网络发展而来的一种前馈型神经网络,其理论依据是贝叶斯最小风险准则(即贝叶斯决策理论), PNN作为径向基网络的一种,适合于模式分类。当分布密度 SPREAD 的值接近于 0 时,它构成最邻分类器; 当 SPREAD 的值较大时,它构成对几个训练样本的临近分类器 。 PNN 的层次模型,由输入层、模式层、求和层、输出层共 4 层组成 , 其基本结构如图 1 所示。
f ( X , w i ) = e x p [ − ( X − w i ) T ( X − W i ) / 2 δ ] (1) f(X,w_i)=exp[-(X-w_i)^T(X-W_i)/2\delta]\tag{1} f(X,wi)=exp[(Xwi)T(XWi)/2δ](1)
式中, w i w_i wi为输入层到模式层连接的权值 ; δ \delta δ为平滑因子,它对分类起着至关重要的作用。第 3 层是求和层,是将属于某类的概率累计 ,按式(1)计算 ,从而得到故障模式的估计概率密度函数。每一类只有一个求和层单元,求和层单元与只属于自己类的模式层单元相连接,而与模式层中的其他单元没有连接。因此求和层单元简单地将属于自己类的模式层单元 的输出相加,而与属于其他类别的模式层单元的输出无关。求和层单元的输出与各类基于内 核的概率密度的估计成比例,通过输出层的归一化处理 , 就能得到各类的概率估计。网络的输 出决策层由简单的阔值辨别器组成,其作用是在各个故障模式的估计概率密度中选择一个具 有最大后验概率密度的神经元作为整个系统的输出。输出层神经元是一种竞争神经元,每个神经元分别对应于一个数据类型即故障模式,输出层神经元个数等于训练样本数据的种类个 数,它接收从求和层输出的各类概率密度函数,概率密度函数最大的那个神经元输出为 1 ,即 所对应的那一类为待识别的样本模式类别,其他神经元的输出全为 0 。

图1.PNN网络结构

2.变压器故障诊街系统相关背景

运行中的变压器发生不同程度的故障时,会产生异常现象或信息。故障分析就是搜集变压器的异常现象或信息,根据这些现象或信息进行分析 ,从而判断故障的类型 、严重程度和故障部位 。 因此 , 变压器故障诊断的目的首先是准确判断运行设备当前处于正常状态还是异常状态。若变压器处于异常状态有故障,则判断故障的性质、类型和原因 。 如是绝缘故障、过热故障还是机械故障。若是绝缘故障,则是绝缘老化 、 受潮,还是放电性故障 ;若是放电性故障又 是哪种类型的放电等。变压器故障诊断还要根据故障信息或根据信息处理结果,预测故障的可能发展即对故障的严重程度、发展趋势做出诊断;提出控制故障的措施,防止和消除故障;提出设备维修的合理方法和相应的反事故措施;对设备的设计、制造、装配等提出改进意见,为设备现代化管理提供科学依据和建议。

2.1 模型建立

本案例在对油中溶解气体分 析法进行深入分析后,以改良三比值法为基础,建立基于概率神经网络的故障诊断模型。案例数据中的 data. mat 是 33 × 4 维的矩阵,前3列为改良三比值法数值,第 4 列为分类的输出,也就是故障的类别 。 使用前 23 个样本作为 PNN 训练样本,后10个样本作为验证样本 。

3.基于鹰栖息优化的PNN网络

鹰栖息算法原理请参考:https://blog.csdn.net/u011835903/article/details/123363341

利用鹰栖息算法对PNN网络的光滑因子进行优化。适应度函数设计为训练集与测试集的分类错误率:
f i t n e s s = a r g m i n { T r a i n E r r o r R a t e + P r e d i c t E r r o r R a t e } (2) fitness = argmin\{TrainErrorRate + PredictErrorRate\}\tag{2} fitness=argmin{TrainErrorRate+PredictErrorRate}(2)

适应度函数表明,如果网络的分类错误率越低越好。

5.测试结果

鹰栖息参数设置如下:

%% 鹰栖息参数
pop=20; %种群数量
Max_iteration=20; %  设定最大迭代次数
dim = 1;%维度,即权值与阈值的个数
lb = 0.01;%下边界
ub = 5;%上边界

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

从结果来看,鹰栖息-pnn能够获得好的分类结果。

6.参考文献

书籍《MATLAB神经网络43个案例分析》,PNN原理部分均来自该书籍

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/175061.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

SV-7042VP sip广播4G无线网络号角

SV-7042VP sip广播4G无线网络号角 1. 采用防水一体化设计,整合了音频解码、数字功放及音柱 2. 提供配置软件,支持SIP标准协议,通过SIP服务器能够接入现有综合通信调度平台系统,接受sip通信调度平台。融合第三方sip协议及sip服务器…

2023亚太杯数学建模思路 - 案例:最短时间生产计划安排

文章目录 0 赛题思路1 模型描述2 实例2.1 问题描述2.2 数学模型2.2.1 模型流程2.2.2 符号约定2.2.3 求解模型 2.3 相关代码2.4 模型求解结果 建模资料 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 最短时…

六、Big Data Tools安装

1、安装 在Jetbrains的任意一款产品中,均可安装Big Data Tools这个插件。 2、示例 下面以DadaGrip为例: (1)打开插件中心 (2)搜索Big Data Tools,下载 3、链接hdfs (1&#xff0…

将kali系统放在U盘中插入电脑直接进入kali系统

首先准备一个空白的 U 盘。 Kali Linux | Penetration Testing and Ethical Hacking Linux Distribution 在 Windows 上制作 Kali 可启动 USB 驱动器 Making a Kali Bootable USB Drive on Windows | Kali Linux Documentation 1. 首先下载 .iso 镜像 Index of /kali-images…

Logstash同步MySQL数据到ES

简介 1.1 什么是Logstash? Logstash作为一个具备实时流水线功能的开源数据收集引擎,拥有强大的能力。它能够从不同来源收集数据,并将其动态地汇聚,进而根据我们定义的规范进行转换或者输出到我们定义的目标地址。 1.2 Logstash的…

【数据结构-零基础学习】线索二叉树(代码+图示+解析)

【数据结构-零基础学习】线索二叉树(代码图示解析) 文章目录 【数据结构-零基础学习】线索二叉树(代码图示解析)[toc]定义产生背景种类示意图1)未加入线索的普通二叉树示意图1.12)线索添加的规则3)中序线索二叉树示意图1.24)中序线索二叉树分析示意图1.3 设计代码逻辑(重点)代码…

2023年软件团队的六款最佳API文档工具

API开发的增长导致了大量的API文档工具的出现,这一点在使用谷歌搜索“API文档工具”时可以明显看到很多的搜索结果。这些工具的激增与全球API开发的扩张和对准确文档的需求增加相一致。值得关注的是,不仅小型创业公司进入了API市场,许多成熟企…

磐舟CI使用说明及案例

整体介绍 磐舟作为一个devops产品,它具备基础的CI流水线功能。同时磐舟的流水线是完全基于云原生架构设计的,在使用时会有一些注意事项。这里首先我们要了解磐舟整体的流水线打包逻辑。 文档结构说明 一般来说,磐舟推荐单个业务的标准git库…

外卖小程序系统:数字化餐饮的编码之道

在当今数字化时代,外卖小程序系统成为了餐饮业的一项技术巨制。这个系统不仅提供了便捷的点餐体验,更通过先进的技术手段,实现了高效订单处理、实时配送追踪以及个性化推荐。让我们深入了解外卖小程序系统的技术魔法,一起揭秘数字…

初识JVM(简单易懂),解开JVM神秘的面纱

目录 一、什么是JVM(Java虚拟机)? 二、JVM的功能 三、JVM的功能-即时编译 四、常见的JVM 五、JVM的组成 五、JVM的工作流程 参考资料 一、什么是JVM(Java虚拟机)? 在Java的世界里,Java虚…

维纳滤波器小结

维纳滤波器小结 一、问题概述 1.1 维纳滤波器简介 维纳滤波器是在最小均方误差(mmse)准则下的线性最优滤波器,其利用平稳随机过程的相关特性和频谱特性,对混有噪声的信号进行滤波。 其输入信号为 u ( n ) d ( n ) v ( n ) u…

适合您的iPhone手机的 8 款最佳手机数据恢复软件

当谈到恢复已删除或丢失的 iPhone 文件时,您通常有两种解决方案:从备份恢复、使用 iPhone 数据恢复软件。 虽然前者听起来很简单,但您可能已经检查过并且没有备份。那么您的下一个选择是尝试 iPhone 数据恢复工具。 市场上有许多软件工具都…

搭个网页应用,让ChatGPT帮我写SQL

大家好,我是凌览。 开门见山,我搭了一个网页应用名字叫sql-translate。访问链接挂在我的个人博客(https://linglan01.cn/about)导航栏,也可以访问https://www.linglan01.cn/c/sql-translate/直达sql-translate。 它的主要功能有:…

酷开科技OS——Coolita,让智能大屏走向国际

10月23日,2023中国—东盟视听传播论坛在南宁举行。作为第五届中国—东盟视听周重要活动之一,本次论坛以“共享新成果、共创新视听、共建新家园”为主题。来自中国和东盟的300余名专家学者、业界代表通过主旨演讲、主题发言、圆桌对话等方式进行深入探讨&…

Linux操作系统使用及C高级编程-D9D10Linux 服务搭建与使用

TFTP服务器 TFTP(Trivial File Transfer Protocol)即简单文件传输协议,是TCP/IP协议中一个用来在客户机与服务器之间进行简单文件传输的协议,提供不复杂、开销不大的文件传输服务。端口号为69 1、使用客户服务器方式和使用UDP数据…

STL中set的基本概念与使用

1 定义 1.1 set内元素唯一 1.2 set内元素默认升序排序 1.3 set内元素增&#xff0c;删&#xff0c;查时间复杂度都是O(logn) 2 使用 2.1 声明 set<int> mySet;2.2 插入元素 /*插入元素*/mySet.insert(5);mySet.insert(4);mySet.insert(3);mySet.insert(2);mySet.in…

Ajax基础(应用场景|jquery实现Ajax|注意事项|Ajax发送json数据|Ajax携带文件数据)

文章目录 一、Ajax简介二、基于jquery实现Ajax三、使用Ajax注意的问题1.Ajax不要与form表单同时提交2.后端响应格式问题3、使用了Ajax作为请求后的注意事项 四、前后端数据传输的编码格式(content-Type)1.urlencoded2.formdata3.application/json 五、Ajax携带文件数据六、Ajax…

基于SSM的网盘管理系统的设计与实现

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;Vue 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#xff1a;是 目录…

轻松上手Obsidian的图片操作 | Obsidian实践

前两天收到一位朋友留言&#xff0c;询问Obsidian笔记中图片的基本使用情况。 想到自己也好久没写文章了&#xff0c;便以此作为动力&#xff0c;基于自己有限经验&#xff0c;简单做个分享吧。 【问题1】图片是否可以通过截图粘贴板插入Obsidian笔记&#xff1f; 是可以实现的…

【C++】string类的介绍与使用

&#x1f9d1;‍&#x1f393;个人主页&#xff1a;简 料 &#x1f3c6;所属专栏&#xff1a;C &#x1f3c6;个人社区&#xff1a;越努力越幸运社区 &#x1f3c6;简 介&#xff1a;简料简料&#xff0c;简单有料~在校大学生一枚&#xff0c;专注C/C/GO的干货分…