几种常见时间复杂度实例分析

多项式量级

常量阶 O(1)

对数阶 O(logn)

线性阶 O(n)

线性对数阶 O(nlogn)

平方阶O(n2 ),立方阶O(n3 )...k次方阶O(nk)

非多项式量级(NP(Non-Deterministic Polynomial,非确定多项式)问题

指数阶O(2n) 

阶乘阶O(n!)


1. O(1)

O(1) 只是常量级时间复杂度的一种表示方法,并不是指只执行了一行代码。比如这段代码,即便有 3 行,它的时间复杂度也是 O(1),而不是 O(3)。


 int i = 8;
 int j = 6;
 int sum = i + j;

只要代码的执行时间不随 n 的增大而增长,这样代码的时间复杂度我们都记作 O(1)。或者说,一般情况下,只要算法中不存在循环语句、递归语句,即使有成千上万行的代码,其时间复杂度也是Ο(1)。

2. O(logn)、O(nlogn)

 i=1;
 while (i <= n)  {
   i = i * 2;
 }

2x=n,x=log2n,所以,这段代码的时间复杂度就是 O(log2n)。

在对数阶时间复杂度的表示方法里,我们忽略对数的“底”,统一表示为 O(logn)。

如果一段代码的时间复杂度是 O(logn),我们循环执行 n 遍,时间复杂度就是 O(nlogn) 了。而且,O(nlogn) 也是一种非常常见的算法时间复杂度。比如,归并排序、快速排序的时间复杂度都是 O(nlogn)。

3. O(m+n)、O(m*n)


int cal(int m, int n) {
  int sum_1 = 0;
  int i = 1;
  for (; i < m; ++i) {
    sum_1 = sum_1 + i;
  }

  int sum_2 = 0;
  int j = 1;
  for (; j < n; ++j) {
    sum_2 = sum_2 + j;
  }

  return sum_1 + sum_2;
}

我们无法事先评估 m 和 n 谁的量级大,所以我们在表示复杂度的时候,就不能简单地利用加法法则,省略掉其中一个。所以,上面代码的时间复杂度就是 O(m+n)。针对这种情况,原来的加法法则就不正确了,我们需要将加法规则改为:T1(m) + T2(n) = O(f(m) + g(n))。但是乘法法则继续有效:T1(m)*T2(n) = O(f(m) * f(n))。

此文章为5月Day2学习笔记,内容来源于极客时间《数据结构与算法之美》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/17343.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Android WebRtc+SRS/ZLM视频通话(1):虚拟机安装Ubuntu

Android WebRtcSRS/ZLM视频通话&#xff08;1&#xff09;&#xff1a;虚拟机安装Ubuntu 来自奔三人员的焦虑日志 秉着没事找事的原则&#xff0c;这里直接从服务器安装开始说起&#xff0c;也当记录自己这一路以来的愚昧之举&#xff0c;由于没有物理服务器&#xff0c;这里以…

MySQL 精选 35 道面试题大厂稳了(含答案)

MySQL 精选 35 道面试题 1.说一下 MySQL 执行一条查询语句的内部执行过程&#xff1f;2.MySQL 查询缓存有什么优缺点&#xff1f;3.MySQL 的常用引擎都有哪些&#xff1f;4.常用的存储引擎 InnoDB 和 MyISAM 有什么区别&#xff1f;5.什么叫回表查询&#xff1f;6.如果把一个 I…

95后阿里P7晒出工资单:狠补了这个,真香···

最近一哥们跟我聊天装逼&#xff0c;说他最近从阿里跳槽了&#xff0c;我问他跳出来拿了多少&#xff1f;哥们表示很得意&#xff0c;说跳槽到新公司一个月后发了工资&#xff0c;月入5万多&#xff0c;表示很满足&#xff01;这样的高薪资着实让人羡慕&#xff0c;我猜这是税后…

TCP的粘包和拆包

UDP有数据边界&#xff0c;TCP是没有数据边界&#xff0c;是流协议。如何拆包&#xff0c;就要靠应用层来处理。 四层网络模型&#xff0c;消息在进入每一层时都会多加一个报头。mac头部记录的是硬件的唯一地址&#xff0c;IP头记录的是从哪来和到哪去&#xff0c;传输层头记录…

优化问题的拉格朗日Lagrange对偶法原理

首先我们定义一般形式的求解x的优化问题&#xff1a; 表示优化的目标函数&#xff0c;上述为最小优化&#xff0c;实际上最大优化可以改写为的形式表示第i个不等式约束表示等式约束 1. Lagrange对偶问题 上述优化问题的拉格朗日Lagrange对偶法求解&#xff0c;是将上述带约束…

【Vue学习笔记6】好用的 Vueuse 工具包

1. 安装Vueuse VueUse 的官方&#xff08;https://vueuse.org/&#xff09;的介绍说这是一个 Composition API 的工具集合&#xff0c;适用于 Vue 2.x 或者 Vue 3.x&#xff0c;用起来和 React Hooks 还挺像的。 VueUse 插件的安装 npm install vueuse/core2. 实现全屏功能 …

【网络安全】记一次杀猪盘渗透实战

看起来非常假的网站&#xff0c;这个网站是没有 cdn 的用的是 thinkphpk 框架搭建的。 先打一波 poc 没有效果 访问一下后台直接在 url 后面加/admin。 一个开源的 cms 还没有验证码尝试用 burp 进行爆破&#xff0c;首先在火狐上设置代理 ip 为 127.0.0.1 代理端口为 8081。 B…

GPT详细安装教程-GPT软件国内也能使用

GPT (Generative Pre-trained Transformer) 是一种基于 Transformer 模型的自然语言处理模型&#xff0c;由 OpenAI 提出&#xff0c;可以应用于各种任务&#xff0c;如对话系统、文本生成、机器翻译等。GPT-3 是目前最大的语言模型之一&#xff0c;其预训练参数超过了 13 亿个…

ChatGPT终于被我问到胡说八道的程度了!

问&#xff1a;Python是强类型语言&#xff0c;还是弱类型语言 chatgpt&#xff1a;Python是强类型语言。Python很少会隐式地转换变量的类型&#xff0c;所以Python是强类型的语言 问&#xff1a;什么是强类型语言 chatgpt&#xff1a;强类型语言是指在编程语言中&#xff0…

Packet Tracer - 配置交换机端口安全

Packet Tracer - 配置交换机端口安全 地址分配表 设备 接口 IP 地址 子网掩码 S1 VLAN 1 10.10.10.2 255.255.255.0 PC1 NIC 10.10.10.10 255.255.255.0 PC2 NIC 10.10.10.11 255.255.255.0 非法笔记本电脑 NIC 10.10.10.12 255.255.255.0 目标 第 1 部…

MTK6765安卓智能模组5G核心板联发科MTK方案主板开发板

联发科MTK6765这是一款12纳米八核A53处理器&#xff0c;最高运行速度可达2.3GHz。它使用Android 9.0操作系统&#xff0c;配备2G16G内存&#xff0c;也支持其他选项1G/3G/4G8G/32G/64G。 此外&#xff0c;它支持全球主流频段&#xff0c;包括默认的国内频段以及2G GSM、2G/3G E…

学生台灯什么牌子好对眼睛好?专业护眼灯的学生台灯分享

据报告统计&#xff0c;2022年我国儿童青少年总体近视率为52.7%&#xff0c;其中6岁儿童为14.3%&#xff0c;小学生为35.6%&#xff0c;初中生为71.1%&#xff0c;高中生为80.5%&#xff0c;这些数据让人不寒而栗&#xff01; 专家表示&#xff0c;导致儿童青少年近视的因素&am…

离散数学下--- 代数系统

代数系统 定义&#xff1a; 代数系统是用代数运算构造数学模型的方法。 • 通过构造手段生成&#xff0c;所以也称代数结构 • 代数运算&#xff1a;在集合上建立满足一定规则的运算系统 &#xff08;一&#xff09;二元运算 二元运算的定义 二元运算需要满足的两个条件&a…

在Ubuntu18.04中安装uWebSockets库

目录 1.下载uWebSockets库2.下载uSockets3.安装openssl开发包4.编译首先说明这里使用的Ubuntu版本为18.04。 1.下载uWebSockets库 下载uWebSockets库有两种方式,一是终端,从Github中克隆uWebSockets库到Ubuntu本地文件夹,二是打开uWebSockets库下载链接自己下载到Windows,然…

Qt音视频开发38-ffmpeg视频暂停录制的设计

一、前言 基本上各种播放器提供的录制视频接口,都是只有开始录制和结束录制两个,当然一般用的最多的也是这两个接口,但是实际使用过程中,还有一种可能需要中途暂停录制,暂停以后再次继续录制,将中间部分视频不需要录制,跳过这部分不需要的视频,而且录制的视频文件必须…

BoldReports Embedded Reporting 5.1 Crack

Embed Paginated Reports 嵌入式报告平台&#xff0c;商业智能报告解决方案&#xff0c;探索满足各种业务需求的报告功能&#xff0c;所有功能View Features&#xff0c;像素完美报告&#xff0c;创建像素完美的分页业务报表&#xff0c;随处部署&#xff0c;选择适合您的部署环…

一文了解获得 Zebec Labs 投资的 Coral Finance,空投计划或在不久推出

在前不久&#xff0c;Zebec Labs宣布对链上衍生品协议Coral Finance进行150万美元的投资&#xff0c;以帮助该协议完成早期启动并&#xff0c;并在后续持续的为其提供孵化支持。Coral Finance将在不久部署在Nautilus Chain主网上。据了解&#xff0c;Coral Finance是Nautilus C…

RabbitMQ入门Demo 简单模式

出现的问题,原本4个操作,要么全部执行,要么全部不执行------->强一致性 但是现在分开了-----------最终一致性 强一致性&#xff1a;指在消息传递的过程中&#xff0c;系统会确保每个消息被精确地按照发送的顺序被传递&#xff0c;并且每个消息都会被正确地处理。强一致性…

GaussDB数据库基础函数介绍-下

接上一篇&#xff0c;本节继续介绍GaussDB数据库常用基础函数 目录 5、范围函数 6、窗口函数 7、聚集函数 8、安全函数 9、系统信息函数 10、动态脱敏函数 GaussDB常用基础函数介绍与示例 5、范围函数 在GaussDB数据库中&#xff0c;范围函数是指用于处理数据库范围的函…

SPSS如何进行相关分析之案例实训?

文章目录 0.引言1.双变量相关分析2.偏相关分析3.距离分析 0.引言 因科研等多场景需要进行数据统计分析&#xff0c;笔者对SPSS进行了学习&#xff0c;本文通过《SPSS统计分析从入门到精通》及其配套素材结合网上相关资料进行学习笔记总结&#xff0c;本文对相关分析进行阐述。 …