【C++】set和map的底层结构(AVL树红黑树)

文章目录

  • 一、前言
  • 二、AVL 树
    • 1.AVL树的概念
    • 2.AVL树节点的定义
    • 3.AVL树的插入
    • 4.AVL树的旋转
    • 5.AVL树的验证
    • 6.AVL树的删除、AVL树的性能
  • 三、红黑树
    • 1.红黑树的概念
    • 2.红黑树的性质
    • 3.红黑树节点的定义
    • 4.红黑树结构
    • 5.红黑树的插入操作
    • 6.红黑树的验证
    • 7.红黑树与AVL树比较
  • 四、红黑树模拟实现STL中的map与set
    • 1.红黑树的迭代器
    • 2.改造红黑树
    • 3.map的模拟实现
    • 4.set的模拟实现


一、前言

前面对map/multimap/set/multiset进行了简单的介绍,在其文档介绍中发现,这几个容器有个共同点是:其底层都是按照二叉搜索树来实现的,但是二叉搜索树有其自身的缺陷,假如往树中插入的元素有序或者接近有序,二叉搜索树就会退化成单支树,时间复杂度会退化成O(N),因此map、set等关联式容器的底层结构是对二叉树进行了平衡处理,即采用平衡树来实现。


二、AVL 树

1.AVL树的概念

二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整),即可降低树的高度,从而减少平均搜索长度

一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

如果一棵二叉搜索树是高度平衡的,它就是AVL树。如果它有n个结点,其高度可保持在 O ( l o g 2 n ) O(log_2 n) O(log2n),搜索时间复杂度O( l o g 2 n log_2 n log2n)

2.AVL树节点的定义

AVL树节点的定义:

template<class T>
struct AVLTreeNode
{
	AVLTreeNode(const T& data)
		: _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr)
		, _data(data), _bf(0)
	{}
	AVLTreeNode<T>* _pLeft;   // 该节点的左孩子
	AVLTreeNode<T>* _pRight;  // 该节点的右孩子
	AVLTreeNode<T>* _pParent; // 该节点的双亲
	T _data;
	int _bf;                  // 该节点的平衡因子
};

3.AVL树的插入

AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL树的插入过程可以分为两步:

  1. 按照二叉搜索树的方式插入新节点
  2. 调整节点的平衡因子
bool Insert(const T& data)
{
	// 1. 先按照二叉搜索树的规则将节点插入到AVL树中
	// ...

	// 2. 新节点插入后,AVL树的平衡性可能会遭到破坏,此时就需要更新平衡因子,并检测是否
	//破坏了AVL树的平衡性 

	 /*
	 pCur插入后,pParent的平衡因子一定需要调整,在插入之前,pParent
	 的平衡因子分为三种情况:-1,0, 1, 分以下两种情况:
	  1. 如果pCur插入到pParent的左侧,只需给pParent的平衡因子-1即可
	  2. 如果pCur插入到pParent的右侧,只需给pParent的平衡因子+1即可
	  
	 此时:pParent的平衡因子可能有三种情况:0,正负1, 正负2
	  1. 如果pParent的平衡因子为0,说明插入之前pParent的平衡因子为正负1,插入后被调整
	成0,此时满足
	     AVL树的性质,插入成功
	  2. 如果pParent的平衡因子为正负1,说明插入前pParent的平衡因子一定为0,插入后被更
	新成正负1,此
	     时以pParent为根的树的高度增加,需要继续向上更新
	  3. 如果pParent的平衡因子为正负2,则pParent的平衡因子违反平衡树的性质,需要对其进
	行旋转处理
	 */
		while (pParent)
		{
			// 更新双亲的平衡因子
			if (pCur == pParent->_pLeft)
				pParent->_bf--;
			else
				pParent->_bf++;
			// 更新后检测双亲的平衡因子
			if (0 == pParent->_bf)
			{
				break;
			}
			else if (1 == pParent->_bf || -1 == pParent->_bf)
			{
				// 插入前双亲的平衡因子是0,插入后双亲的平衡因为为1 或者 -1 ,说明以双亲
				为根的二叉树
					// 的高度增加了一层,因此需要继续向上调整
					pCur = pParent;
				pParent = pCur->_pParent;
			}
			else
			{
				// 双亲的平衡因子为正负2,违反了AVL树的平衡性,需要对以pParent
				// 为根的树进行旋转处理
				if (2 == pParent->_bf)
				{
					// ...
				}
				else
				{
					// ...
				}
			}
		}
	return true;
}

4.AVL树的旋转

如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,使之平衡化。

旋转的目的:

  • 让这颗子树的高度不超过1(降低子树高度);
  • 旋转过程中继续保持它是搜索树;
  • 更新孩子节点的平衡因子;

根据节点插入位置的不同,AVL树的旋转分为四种:

  • 1.新节点插入较高左子树的左侧—左左:右单旋

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

/*
  上图在插入前,AVL树是平衡的,新节点插入到30的左子树(注意:此处不是左孩子)中,30左
子树增加
  了一层,导致以60为根的二叉树不平衡,要让60平衡,只能将60左子树的高度减少一层,右子
树增加一层,
  即将左子树往上提,这样60转下来,因为60比30大,只能将其放在30的右子树,而如果30有
右子树,右子树根的值一定大于30,小于60,只能将其放在60的左子树,旋转完成后,更新节点
的平衡因子即可。在旋转过程中,有以下几种情况需要考虑:
  1. 30节点的右孩子可能存在,也可能不存在
  2. 60可能是根节点,也可能是子树
     如果是根节点,旋转完成后,要更新根节点
     如果是子树,可能是某个节点的左子树,也可能是右子树
    
同学们再此处可举一些详细的例子进行画图,考虑各种情况,加深旋转的理解
*/

void _RotateR(PNode pParent)
{
	// pSubL: pParent的左孩子
	// pSubLR: pParent左孩子的右孩子,
	PNode pSubL = pParent->_pLeft;
	PNode pSubLR = pSubL->_pRight;

	// 旋转完成之后,30的右孩子作为双亲的左孩子
	pParent->_pLeft = pSubLR;
    
	// 如果30的左孩子的右孩子存在,更新亲双亲
	if (pSubLR)
		pSubLR->_pParent = pParent;

	// 60 作为 30的右孩子
	pSubL->_pRight = pParent;

	// 因为60可能是棵子树,因此在更新其双亲前必须先保存60的双亲
	PNode pPParent = pParent->_pParent;

	// 更新60的双亲
	pParent->_pParent = pSubL;

	// 更新30的双亲
	pSubL->_pParent = pPParent;

	// 如果60是根节点,根新指向根节点的指针
	if (NULL == pPParent)
	{
		_pRoot = pSubL;
		pSubL->_pParent = NULL;
	}
	else
	{
		// 如果60是子树,可能是其双亲的左子树,也可能是右子树
		if (pPParent->_pLeft == pParent)
			pPParent->_pLeft = pSubL;
		else
			pPParent->_pRight = pSubL;
	}

	// 根据调整后的结构更新部分节点的平衡因子
	pParent->_bf = pSubL->_bf = 0;
}
  • 2.新节点插入较高右子树的右侧—右右:左单旋

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

实现及情况考虑可参考右单旋。

  • 3.新节点插入较高左子树的右侧—左右:先左单旋再右单旋

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

将双旋变成单旋后再旋转,即:先对30进行左单旋,然后再对90进行右单旋,旋转完成后再考虑平衡因子的更新

// 旋转之前,60的平衡因子可能是-1/0/1,旋转完成之后,根据情况对其他节点的平衡因子进
// 行调整
void _RotateLR(PNode pParent)
{
	PNode pSubL = pParent->_pLeft;
	PNode pSubLR = pSubL->_pRight;

	// 旋转之前,保存pSubLR的平衡因子,旋转完成之后,需要根据该平衡因子来调整其他节
	// 点的平衡因子(pSubLR: pParent左孩子的右孩子)
		int bf = pSubLR->_bf;

	// 先对30进行左单旋
	_RotateL(pParent->_pLeft);

	// 再对90进行右单旋
	_RotateR(pParent);
	if (1 == bf)
		pSubL->_bf = -1;
	else if (-1 == bf)
		pParent->_bf = 1;
}
  • 4.新节点插入较高右子树的左侧—右左:先右单旋再左单旋

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

参考右左双旋。

总结:

假如以pParent为根的子树不平衡,即pParent的平衡因子为2或者-2,分以下情况考虑

  1. pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR

    • 当pSubR的平衡因子为1时,执行左单旋
    • 当pSubR的平衡因子为-1时,执行右左双旋
  2. pParent的平衡因子为-2,说明pParent的左子树高,设pParent的左子树的根为pSubL

    • 当pSubL的平衡因子为-1是,执行右单旋
    • 当pSubL的平衡因子为1时,执行左右双旋

旋转完成后,原pParent为根的子树个高度降低,已经平衡,不需要再向上更新。

5.AVL树的验证

AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:

  1. 验证其为二叉搜索树
  • 如果中序遍历可得到一个有序的序列,就说明为二叉搜索树
  1. 验证其为平衡树
  • 每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)
  • 节点的平衡因子是否计算正确
  1. 验证用例

6.AVL树的删除、AVL树的性能

  • AVL树的删除(了解)

因为AVL树也是二叉搜索树,可按照二叉搜索树的方式将节点删除,然后再更新平衡因子,只不错与删除不同的时,删除节点后的平衡因子更新,最差情况下一直要调整到根节点的位置。

  • AVL树的性能

AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即 l o g 2 ( N ) log_2 (N) log2(N)。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。


三、红黑树

1.红黑树的概念

红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是Red或Black。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保没有一条路径会比其他路径长出俩倍,因而是接近平衡的。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

2.红黑树的性质

  1. 每个结点不是红色就是黑色
  2. 根节点是黑色的
  3. 如果一个节点是红色的,则它的两个孩子结点是黑色的
  4. 对于每个结点,从该结点到其所有后代叶结点的简单路径上,均 包含相同数目的黑色结点(每条路径上都包含相同数目的黑色节点)
  5. 每个叶子结点都是黑色的(此处的叶子结点指的是空结点

思考:为什么满足上面的性质,红黑树就能保证:其最长路径中节点个数不会超过最短路径节点个数的两倍?

答:因为组织结构已经确定(构成树的黑色节点一定,红色节点只能在黑色节点之间),无论如何填充红色节点都不会超过全黑节点路径的两倍。

3.红黑树节点的定义

// 节点的颜色
enum Color { RED, BLACK };
// 红黑树节点的定义
template<class ValueType>
struct RBTreeNode
{
	RBTreeNode(const ValueType& data = ValueType(),Color color = RED)
		: _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr)
		, _data(data), _color(color)
	{}

	RBTreeNode<ValueType>* _pLeft;   // 节点的左孩子
	RBTreeNode<ValueType>* _pRight;  // 节点的右孩子
	RBTreeNode<ValueType>* _pParent; // 节点的双亲(红黑树需要旋转,为了实现简单给出该字段)

	ValueType _data;            // 节点的值域
	Color _color;               // 节点的颜色
};

思考:在节点的定义中,为什么要将节点的默认颜色给成红色的?

答:违背规则3的代价比违背规则4的代价更小(红黑树的性质)。

4.红黑树结构

为了后续实现关联式容器简单,红黑树的实现中增加一个头结点,因为跟节点必须为黑色,为了与根节点进行区分,将头结点给成黑色,并且让头结点的 pParent域指向红黑树的根节点,pLeft域指向红黑树中最小的节点,_pRight域指向红黑树中最大的节点,如下:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

5.红黑树的插入操作

红黑树是在二叉搜索树的基础上加上其平衡限制条件,因此红黑树的插入可分为两步:

  • 按照二叉搜索的树规则插入新节点
template<class ValueType>
class RBTree
{
	//……
	bool Insert(const ValueType& data)
	{
		PNode& pRoot = GetRoot();
		if (nullptr == pRoot)
		{
			pRoot = new Node(data, BLACK);
			// 根的双亲为头节点
			pRoot->_pParent = _pHead;
			_pHead->_pParent = pRoot;
		}
		else
		{
			// 1. 按照二叉搜索的树方式插入新节点
						// 2. 检测新节点插入后,红黑树的性质是否造到破坏,
			//   若满足直接退出,否则对红黑树进行旋转着色处理
		}

		// 根节点的颜色可能被修改,将其改回黑色
		pRoot->_color = BLACK;
		_pHead->_pLeft = LeftMost();
		_pHead->_pRight = RightMost();
		return true;
	}
private:
	PNode& GetRoot() { return _pHead->_pParent; }
	// 获取红黑树中最小节点,即最左侧节点
	PNode LeftMost();
	// 获取红黑树中最大节点,即最右侧节点
	PNode RightMost();
private:
	PNode _pHead;
};
  • 检测新节点插入后,红黑树的性质是否造到破坏

因为新节点的默认颜色是红色,因此:如果其双亲节点的颜色是黑色,没有违反红黑树任何性质,则不需要调整;但当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连在一起的红色节点,此时需要对红黑树分情况来讨论:

  • 约定:cur为当前节点,p为父节点,g为祖父节点,u为叔叔节点

  • 情况一: cur为红,p为红,g为黑,u存在且为红

注:下图右边的树为我们的修改目标

总结:解决方式:将p,u改为黑,g改为红,然后把g当成cur,继续向上调整。

  • 情况二: cur为红,p为红,g为黑,u不存在/u存在且为黑

总结:p为g的左孩子,cur为p的左孩子,则进行右单旋转;相反,p为g的右孩子,cur为p的右孩子,则进行左单旋转;p、g变色–p变黑,g变红

  • 情况三: cur为红,p为红,g为黑,u不存在/u存在且为黑

在这里插入图片描述

总结:p为g的左孩子,cur为p的右孩子,则针对p做左单旋转;相反,p为g的右孩子,cur为p的左孩子,则针对p做右单旋转;则转换成了情况2

6.红黑树的验证

红黑树的检测分为两步:

  1. 检测其是否满足二叉搜索树(中序遍历是否为有序序列)
  2. 检测其是否满足红黑树的性质
bool IsValidRBTree()
{
	PNode pRoot = GetRoot();
	// 空树也是红黑树
	if (nullptr == pRoot)
		return true;

	// 检测根节点是否满足情况
	if (BLACK != pRoot->_color)
	{
		cout << "违反红黑树性质二:根节点必须为黑色" << endl;
		return false;
	}

	// 获取任意一条路径中黑色节点的个数
	size_t blackCount = 0;
	PNode pCur = pRoot;
	while (pCur)
	{
		if (BLACK == pCur->_color)
			blackCount++;
		pCur = pCur->_pLeft;
	}

	// 检测是否满足红黑树的性质,k用来记录路径中黑色节点的个数
	size_t k = 0;
	return _IsValidRBTree(pRoot, k, blackCount);
}
bool _IsValidRBTree(PNode pRoot, size_t k, const size_t blackCount)
{
	//走到null之后,判断k和black是否相等
	if (nullptr == pRoot)
	{
		if (k != blackCount)
		{
			cout << "违反性质四:每条路径中黑色节点的个数必须相同" << endl;
			return false;
		}
		return true;
	}

	// 统计黑色节点的个数
	if (BLACK == pRoot->_color)
		k++;

	// 检测当前节点与其双亲是否都为红色
	PNode pParent = pRoot->_pParent;
	if (pParent && RED == pParent->_color && RED == pRoot->_color)
	{
		cout << "违反性质三:没有连在一起的红色节点" << endl;
		return false;
	}

	return _IsValidRBTree(pRoot->_pLeft, k, blackCount) &&
		_IsValidRBTree(pRoot->_pRight, k, blackCount);
}

7.红黑树与AVL树比较

红黑树和AVL树都是高效的平衡二叉树,增删改查的时间复杂度都是O( l o g 2 N log_2 N log2N),红黑树不追求绝对平衡,其只需保证最长路径不超过最短路径的2倍,相对而言,降低了插入和旋转的次数,所以在经常进行增删的结构中性能比AVL树更优,而且红黑树实现比较简单,所以实际运用中红黑树更多。

由于红黑树优秀的性能,它已经被应用于 C++ STL库 – map/set、mutil_map/mutil_set。

四、红黑树模拟实现STL中的map与set

1.红黑树的迭代器

迭代器的好处是可以方便遍历,是数据结构的底层实现与用户透明。如果想要给红黑树增加迭代器,需要考虑以前问题:

  • begin() 与 end()

STL明确规定,begin()与end()代表的是一段前闭后开的区间,而对红黑树进行中序遍历后,可以得到一个有序的序列,因此:begin()可以放在红黑树中最小节点(即最左侧节点)的位置,end()放在最大节点(最右侧节点)的下一个位置,关键是最大节点的下一个位置在哪块?能否给成nullptr呢?答案是行不通的,因为对end()位置的迭代器进行–操作,必须要能找最后一个元素,此处就不行,因此最好的方式是将end()放在头结点的位置:

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  • operator++() 与 operator–()
// 找迭代器的下一个节点,下一个节点肯定比其大
void Increasement()
{
	//分两种情况讨论:_pNode的右子树存在和不存在
	// 右子树存在
	if (_pNode->_pRight)
	{
		// 右子树中最小的节点,即右子树中最左侧节点
		_pNode = _pNode->_pRight;
		while (_pNode->_pLeft)
			_pNode = _pNode->_pLeft;
	}
	else
	{
		// 右子树不存在,向上查找,直到_pNode != pParent->right
		PNode pParent = _pNode->_pParent;
		while (pParent->_pRight == _pNode)
		{
			_pNode = pParent;
			pParent = _pNode->_pParent;
		}

		// 特殊情况:根节点没有右子树
		if (_pNode->_pRight != pParent)
			_pNode = pParent;
	}
}

// 获取迭代器指向节点的前一个节点
void Decreasement()
{
	//分三种情况讨论:_pNode 在head的位置,_pNode 左子树存在,_pNode 左子树不
	存在
		// 1. _pNode 在head的位置,--应该将_pNode放在红黑树中最大节点的位置
		if (_pNode->_pParent->_pParent == _pNode && _pNode->_color == RED)
			_pNode = _pNode->_pRight;
		else if (_pNode->_pLeft)
		{
			// 2. _pNode的左子树存在,在左子树中找最大的节点,即左子树中最右侧节点
			_pNode = _pNode->_pLeft;
			while (_pNode->_pRight)
				_pNode = _pNode->_pRight;
		}
		else
		{
			// _pNode的左子树不存在,只能向上找
			PNode pParent = _pNode->_pParent;
			while (_pNode == pParent->_pLeft)
			{
				_pNode = pParent;
				pParent = _pNode->_pParent;
			}
			_pNode = pParent;
		}
}

2.改造红黑树

  • RBTree.h
#pragma once

enum Colour
{
	RED,
	BLACK,
};

template<class T>
struct RBTreeNode
{
	T _data;
	RBTreeNode<T>* _left;
	RBTreeNode<T>* _right;
	RBTreeNode<T>* _parent;
	Colour _col;

	RBTreeNode(const T& data)
		:_data(data)
		, _left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _col(RED)
	{}
};

template<class T, class Ref, class Ptr>
struct __RBTreeIterator
{
	typedef RBTreeNode<T> Node;
	typedef __RBTreeIterator<T, Ref, Ptr> Self;
	typedef __RBTreeIterator<T, T&, T*> iterator;

	Node* _node;

	__RBTreeIterator(Node* node)
		:_node(node)
	{}

	// 普通迭代器的时候,他是拷贝构造
	// const迭代器的时候,他是构造,支持用普通迭代器构造const迭代器
	__RBTreeIterator(const iterator& s)
		:_node(s._node)
	{}

	Ref operator*()
	{
		return _node->_data;
	}

	Ptr operator->()
	{
		return &_node->_data;
	}

	Self& operator++()
	{
		if (_node->_right)
		{
			Node* min = _node->_right;
			while (min->_left)
			{
				min = min->_left;
			}

			_node = min;
		}
		else
		{
			Node* cur = _node;
			Node* parent = cur->_parent;
			while (parent && cur == parent->_right)
			{
				cur = cur->_parent;
				parent = parent->_parent;
			}

			_node = parent;
		}

		return *this;
	}

	Self& operator--()
	{
		if (_node->_left)
		{
			Node* max = _node->_left;
			while (max->_right)
			{
				max = max->_right;
			}

			_node = max;
		}
		else
		{
			Node* cur = _node;
			Node* parent = cur->_parent;
			while (parent && cur == parent->_left)
			{
				cur = cur->_parent;
				parent = parent->_parent;
			}

			_node = parent;
		}

		return *this;
	}

	bool operator!=(const Self& s) const
	{
		return _node != s._node;
	}

	bool operator==(const Self& s) const
	{
		return _node == s._node;
	}

};


// map->RBTree<K, pair<const K, V>, MapKeyOfT> _t;
// set->RBTree<K, K, SetKeyOfT> _t;
template<class K, class T, class KeyOfT>
class RBTree
{
	typedef RBTreeNode<T> Node;
public:
	typedef __RBTreeIterator<T, T& ,T*> iterator;
	typedef __RBTreeIterator<T, const T&, const T*> const_iterator;


	iterator begin()
	{
		Node* left = _root;
		while (left && left->_left)
		{
			left = left->_left;
		}

		return iterator(left);
	}

	iterator end()
	{
		return iterator(nullptr);
	}


	const_iterator begin() const
	{
		Node* left = _root;
		while (left && left->_left)
		{
			left = left->_left;
		}

		return const_iterator(left);
	}

	const_iterator end() const
	{
		return const_iterator(nullptr);
	}

	pair<iterator, bool> Insert(const T& data)
	{
		if (_root == nullptr)
		{
			_root = new Node(data);
			_root->_col = BLACK;
			return make_pair(iterator(_root), true);
		}

		KeyOfT kot;
		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (kot(cur->_data) < kot(data))
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (kot(cur->_data) > kot(data))
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return make_pair(iterator(cur), false);
			}
		}

		cur = new Node(data);
		Node* newnode = cur;
		cur->_col = RED;
		if (kot(parent->_data) < kot(data))
		{
			parent->_right = cur;
			cur->_parent = parent;
		}
		else
		{
			parent->_left = cur;
			cur->_parent = parent;
		}

		while (parent && parent->_col == RED)
		{
			Node* grandfater = parent->_parent;
			if (parent == grandfater->_left)
			{
				Node* uncle = grandfater->_right;
				// 情况一  uncle存在且为红
				if (uncle && uncle->_col == RED)
				{
					parent->_col = uncle->_col = BLACK;
					grandfater->_col = RED;

					cur = grandfater;
					parent = cur->_parent;
				}
				else
				{
					if (cur == parent->_left)
					{
						// 情况二
						RotateR(grandfater);
						parent->_col = BLACK;
						grandfater->_col = RED;
					}
					else
					{
						// 情况三
						RotateL(parent);
						RotateR(grandfater);
						cur->_col = BLACK;
						grandfater->_col = RED;
					}

					break;
				}
			}
			else // (parent == grandfater->_right)
			{
				Node* uncle = grandfater->_left;
				if (uncle && uncle->_col == RED)
				{
					parent->_col = uncle->_col = BLACK;
					grandfater->_col = RED;

					cur = grandfater;
					parent = cur->_parent;
				}
				else
				{
					//   g                
					//      p
                    //         c
					if (cur == parent->_right)
					{
						RotateL(grandfater);
						parent->_col = BLACK;
						grandfater->_col = RED;
					}
					else
					{
						//   g                
						//      p
						//   c
						RotateR(parent);
						RotateL(grandfater);
						cur->_col = BLACK;
						grandfater->_col = RED;
					}

					break;
				}
			}
		}

		_root->_col = BLACK;

		return make_pair(iterator(newnode), true);;
	}

	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		if (subRL)
			subRL->_parent = parent;

		Node* ppNode = parent->_parent;
		subR->_left = parent;
		parent->_parent = subR;


		if (ppNode == nullptr)
		{
			_root = subR;
			_root->_parent = nullptr;
		}
		else
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subR;
			}
			else
			{
				ppNode->_right = subR;
			}

			subR->_parent = ppNode;
		}
	}

	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
		{
			subLR->_parent = parent;
		}

		Node* ppNode = parent->_parent;
		subL->_right = parent;
		parent->_parent = subL;

		//if (_root == parent)
		if (ppNode == nullptr)
		{
			_root = subL;
			_root->_parent = nullptr;
		}
		else
		{
			if (ppNode->_left == parent)
			{
				ppNode->_left = subL;
			}
			else
			{
				ppNode->_right = subL;
			}

			subL->_parent = ppNode;
		}
	}

	void Inorder()
	{
		_Inorder(_root);
	}

	void _Inorder(Node* root)
	{
		if (root == nullptr)
			return;

		_Inorder(root->_left);
		cout << root->_kv.first << ":" << root->_kv.second << endl;
		_Inorder(root->_right);
	}

	bool Check(Node* root, int blackNum, const int ref)
	{
		if (root == nullptr)
		{
			//cout << blackNum << endl;
			if (blackNum != ref)
			{
				cout << "违反规则:本条路径的黑色节点的数量跟最左路径不相等" << endl;
				return false;
			}

			return true;
		}

		if (root->_col == RED && root->_parent->_col == RED)
		{
			cout << "违反规则:出现连续红色节点" << endl;
			return false;
		}

		if (root->_col == BLACK)
		{
			++blackNum;
		}

		return Check(root->_left, blackNum, ref)
			&& Check(root->_right, blackNum, ref);
	}

	bool IsBalance()
	{
		if (_root == nullptr)
		{
			return true;
		}

		if (_root->_col != BLACK)
		{
			return false;
		}

		int ref = 0;
		Node* left = _root;
		while (left)
		{
			if (left->_col == BLACK)
			{
				++ref;
			}

			left = left->_left;
		}

		return Check(_root, 0, ref);
	}

private:
	Node* _root = nullptr;
};

template<class K>
struct SetKeyOfT
{
	const K& operator()(const K& key)
	{
		return key;
	}
};

void testRBTree()
{
	RBTree<int, int, SetKeyOfT<int>> t;
	RBTree<int, int, SetKeyOfT<int>>::const_iterator it = t.begin();
}

3.map的模拟实现

  • Map.h
#pragma once

#include "RBTree.h"

namespace _map
{
	template<class K, class V>
	class map
	{
		struct MapKeyOfT
		{
			const K& operator()(const pair<const K, V>& kv)
			{
				return kv.first;
			}
		};
	public:
		typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::iterator iterator;
		typedef typename RBTree<K, pair<const K, V>, MapKeyOfT>::const_iterator const_iterator;


		iterator begin()
		{
			return _t.begin();
		}

		iterator end()
		{
			return _t.end();
		}

		const_iterator begin() const
		{
			return _t.begin();
		}

		const_iterator end() const
		{
			return _t.end();
		}

		pair<iterator, bool> insert(const pair<const K, V>& kv)
		{
			return _t.Insert(kv);
		}

		V& operator[](const K& key)
		{
			pair<iterator, bool> ret = insert(make_pair(key, V()));
			return ret.first->second;
		}
	private:
		RBTree<K, pair<const K, V>, MapKeyOfT> _t;
	};

	void test_map()
	{
		int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };
		map<int, int> m;
		for (auto e : a)
		{
			m.insert(make_pair(e, e));
		}

		map<int, int>::iterator it = m.begin();
		while (it != m.end())
		{
			//it->first++;
			it->second++;
			cout << it->first << ":" << it->second << endl;
			++it;
		}
		cout << endl;

		map<string, int> countMap;
		string arr[] = { "ƻ", "", "㽶", "ݮ", "ƻ", "", "ƻ", "ƻ", "", "ƻ", "㽶", "ƻ", "㽶" };
		for (auto& e : arr)
		{
			countMap[e]++;
		}

		for (auto& kv : countMap)
		{
			cout << kv.first << ":" << kv.second << endl;
		}
	}
}

4.set的模拟实现

  • Set.h
#pragma once

#include "RBTree.h"

namespace _set
{
	template<class K>
	class set
	{
		struct SetKeyOfT
		{
			const K& operator()(const K& key)
			{
				return key;
			}
		};
	public:
		typedef typename RBTree<K, K, SetKeyOfT>::const_iterator iterator;
		typedef typename RBTree<K, K, SetKeyOfT>::const_iterator const_iterator;

		iterator begin() const
		{
			return _t.begin();
		}

		iterator end() const
		{
			return _t.end();
		}

		// 20:21
		pair<iterator, bool> insert(const K& key)
		{
			pair<typename RBTree<K, K, SetKeyOfT>::iterator, bool> ret = _t.Insert(key);
			return pair<iterator, bool>(ret.first, ret.second);
		}
	private:
		RBTree<K, K, SetKeyOfT> _t;
	};

	void test_set()
	{
		int a[] = { 4, 2, 6, 1, 3, 5, 15, 7, 16, 14 };
		set<int> s;
		for (auto e : a)
		{
			s.insert(e);
		}

		set<int>::iterator it = s.begin();
		while (it != s.end())
		{
			//*it += 10;
			cout << *it << " ";
			++it;
		}
		cout << endl;

		for (auto e : s)
		{
			cout << e << " ";
		}
		cout << endl;
	}
}

  • Test.cpp
#include <iostream>
#include <set>
#include <map>
#include <string>
using namespace std;

#include "RBTree.h"

#include "Map.h"
#include "Set.h"

int main()
{
	_map::test_map();
	_set::test_set();

	return 0;
}

🌹🌹 map和set的底层原理 的知识大概就讲到这里啦,博主后续会继续更新更多C++ 和 Linux的相关知识,干货满满,如果觉得博主写的还不错的话,希望各位小伙伴不要吝啬手中的三连哦!你们的支持是博主坚持创作的动力!💪💪

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/173392.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

人工智能时代下的程序员核心竞争力:构建专属护城河

选题建议&#xff1a;《人工智能时代下的程序员核心竞争力&#xff1a;构建你的护城河》 大纲&#xff1a; I. 引言 A. 人工智能时代的发展趋势B. 程序员面临的挑战与机遇 I. 引言 A. 人工智能时代的发展趋势 随着科技的飞速进步&#xff0c;我们已经踏入了一个日新月异的人工…

原型设计神器推荐:5款专业实用的软件大揭秘

1、即时设计 即时设计是一个专业的在线原型设计工具&#xff0c;支持多人团队协作&#xff0c;设计、原型、开发一站式即可都搞定&#xff0c;无需来回切换软件&#xff0c;原型设计功能强大&#xff0c;交互事件、智能动画、原型连线&#xff0c;让设计更加真实&#xff0c;可…

详解Python Tornado框架写一个Web应用全过程

Tornado是什么 之前在看Jupyter组件的源码的时候&#xff0c;发现了tornado这个web框架。 不仅仅做一个web框架&#xff0c; 通过使用非阻塞网络I/O&#xff0c;Tornado可以扩展到数万个开放连接。 这样非常适合 long polling &#xff0c; WebSockets 以及其他需要与每个用户…

【Java 进阶篇】揭秘 Jackson:Java 对象转 JSON 注解的魔法

嗨&#xff0c;亲爱的同学们&#xff01;欢迎来到这篇关于 Jackson JSON 解析器中 Java 对象转 JSON 注解的详细解析指南。JSON&#xff08;JavaScript Object Notation&#xff09;是一种常用于数据交换的轻量级数据格式&#xff0c;而 Jackson 作为一款优秀的 JSON 解析库&am…

SAP 调取http的x-www-form-urlencoded形式的接口

一、了解下x-www-form-urlencoded形式对于SAP来说有啥区别 简单来说&#xff0c; 1.raw格式就是标准的json格式&#xff1a;{“Name”:“John Smith”&#xff0c;“Age”: 23} 2.x-www格式是要转化一下的&#xff1a;NameJohnSmith&Age23 字段与字段相互连接要用 & 符…

java项目之社区互助平台(ssm+vue)

项目简介 社区互助平台实现了以下功能&#xff1a; 1、一般用户的功能及权限 所谓一般用户就是指还没有注册的过客,他们可以浏览主页面上的信息。但如果有中意的社区互助信息时&#xff0c;要登录注册&#xff0c;只有注册成功才有的权限。2、管理员的功能及权限 用户信息的添…

趣学python编程(七、实现个小网站如此简单 web.py使用介绍)

这里先拿一个小网站的例子来举例&#xff0c;保持好奇心就可以了。因为兴趣才是最好的老师&#xff0c;它能激发人内在的行动力。这里介绍个使用web.py轻量级框架实现的一个小网站&#xff0c;可以看到实现个小网站并不难。python都能用来干什么&#xff1f;那么网站就是它众多…

基于猎食者算法优化概率神经网络PNN的分类预测 - 附代码

基于猎食者算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于猎食者算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于猎食者优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要&#xff1a;针对PNN神经网络…

2023年【A特种设备相关管理(锅炉压力容器压力管道)】模拟考试题及A特种设备相关管理(锅炉压力容器压力管道)作业考试题库

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 A特种设备相关管理&#xff08;锅炉压力容器压力管道&#xff09;模拟考试题参考答案及A特种设备相关管理&#xff08;锅炉压力容器压力管道&#xff09;考试试题解析是安全生产模拟考试一点通题库老师及A特种设备相关…

MySQL数据库系统教程

基础篇 通用语法及分类 DDL: 数据定义语言&#xff0c;用来定义数据库对象&#xff08;数据库、表、字段&#xff09;DML: 数据操作语言&#xff0c;用来对数据库表中的数据进行增删改DQL: 数据查询语言&#xff0c;用来查询数据库中表的记录DCL: 数据控制语言&#xff0c;用…

【Seata源码学习 】篇三 TM开启全局事务的过程

【Seata源码学习 】篇三 TM开启全局事务的过程 TM发送 单个或批量 消息 以发送GlobalBeginRequest消息为例 TM在执行拦截器链路前将向TC发送GlobalBeginRequest 消息 io.seata.tm.api.DefaultGlobalTransaction#begin(int, java.lang.String) Overridepublic String begin(…

2023.11.20 关于 Spring MVC 详解

目录 MVC 工作流程 Spring MVC 掌握三个功能 创建 Spring MVC 项目 推荐安装插件 EditStarters 安装步骤 使用方法 实现连接功能 基础注解 RequestMapping 指定 GET 和 POST 方法类型 ResponseBody 获取参数 传递 单个 或 多个参数 参数重命名 RequestParam …

P1141 01迷宫(dfs+染色联通块)

染色联通块&#xff1a; 一个格联通的所有格 每个对应的最大可联通格子的个数均相同 分析&#xff1a; 1.只需要计算每个块里的元素个数 2.元素标记对应某个块 3.查找元素时&#xff1a; 由 &#xff08;1&#xff09;元素坐标-> &#xff08;2&#xff09;查找…

DSP介绍及CCS

文章目录 CCS版本编译器CCS使用注意严禁中文 CCS的基本操作新建工程导入现有工程调整字体的大小工程界面恢复标签的使用 仿真盒小虫子进入在线Debug 芯片TMS320F28355基本介绍特性 DSP中特殊指令dsp指令中的EALLOW EDIS CCS TI官网 版本 CCS版本&#xff1a; CCS8.3.1.0004_…

养猫7年:猫罐头牌子哪个好用?5款口碑好的猫罐头推荐!

猫罐头牌子哪个好用&#xff1f;刚开始养猫真的好心累&#xff0c;因为一开始啥也不懂&#xff0c;关于猫猫的饮食这也不会选那也不会选&#xff0c;就很容易踩雷&#xff0c;为此花了不少钱&#xff0c;相信很多新手铲屎官现在也处于这种状态吧。 作为一个养猫7年的资深铲屎官…

Day01 嵌入式 -----流水灯

一、简单介绍 嵌入式系统中的流水灯是一种常见的示例项目&#xff0c;通常用于演示嵌入式系统的基本功能和控制能力。流水灯由多个发光二极管&#xff08;LED&#xff09;组成&#xff0c;这些LED按照一定的顺序依次点亮和熄灭&#xff0c;形成一种像水流一样的流动效果。 二、…

django+drf+vue 简单系统搭建 (3) - 基于类的视图

传统Django中有基于类的视图&#xff0c;Drf中自然也有&#xff0c;目的都是实现功能的模块化继承&#xff0c;封装&#xff0c;减少重复代码。 首先在视图中新增下面代码&#xff1a; # simpletool/views.pyfrom rest_framework.views import APIView from simpletool.seria…

关于使用Java-JWT的笔记

Token的组成规则 一个token分三部分&#xff0c;按顺序为&#xff1a;头部&#xff08;header)&#xff0c;载荷&#xff08;payload)&#xff0c;签证&#xff08;signature) 由三部分生成token &#xff0c;三部分之间用“.”号做分隔。 例如&#xff1a;“eyJhbGciOiJIUzI1…

【Android Jetpack】理解ViewModel

文章目录 ViewModel实现ViewModelViewModel的生命周期在Fragments间分享数据ViewModel和SavedInstanceState对比ViewModel原理ViewModel与AndroidViewModel ViewModel Android系统提供控件&#xff0c;比如Activity和Fragment&#xff0c;这些控件都是具有生命周期方法&#x…

对象中扩展运算符的作用

1.对象的合并 let o1 {name: "张三",age: 18,brother: {name: "李四",age: 19,},};//属性不重复let o2 {hobby: "打篮球",};console.log({ ...o1, ...o2 });//属性重复&#xff0c;后面对象的属性会覆盖前面的属性let o3 {name: "王五&q…