U4_1:图论之DFS/BFS/TS/Scc

文章目录

  • 一、图的基本概念
  • 二、广度优先搜索(BFS)
    • 记录
    • 伪代码
    • 时间复杂度
    • 流程
    • 应用
  • 三、深度优先搜索(DFS)
    • 记录
    • 伪代码
    • 时间复杂度
    • 流程
    • 时间戳结构
    • BFS和DFS比较
  • 四、拓扑排序
    • 一些概念
      • 有向图
      • 作用
      • 拓扑排序
    • 分析
    • 伪代码
    • 时间复杂度
    • 彩蛋
  • 五、强连通分量-SCC
    • 分析
    • 伪代码
    • 时间复杂度

一、图的基本概念

由点(vertices)和边(edges)组成
G = ( V , E ) G=(V,E) G=(V,E) ∣ V ∣ = n |V|=n V=n, ∣ E ∣ = m |E|=m E=m (这里默认有向图,无向图用 G G G = = ={ V V V, E E E}表示

顶点的度是关联在其上的边的数量。满足 ∑ d e g r e e ( v ) = 2 ∣ E ∣ \sum degree(v)=2|E| degree(v)=2∣E(握手定理)

路径:一个序列 < V 0 , V 1 , . . . , V k > <V_0,V_1,...,V_k> <V0,V1,...,Vk> i = 1 , 2 , . . . , k i=1,2,...,k i=1,2,...,k满足 ( V i − 1 , V i ) (V_{i-1},V_i) (Vi1,Vi),序列中任意两点之间都是可达的。
简单路径:序列中所有顶点都是不同的。

环:一个路径 < V 0 , V 1 , . . . , V k > <V_0,V_1,...,V_k> <V0,V1,...,Vk>并且 V 0 = V k V_0=V_k V0=Vk并且路径上所有边都是不同的
简单环: V 1 , V 2 , . . . , V k V_1,V_2,...,V_k V1,V2,...,Vk是不同的。

连通:两个点之间存在路径。每个顶点对之间都连通,则这个图是连通的

连通分量:两点之间连通的最大集合的个数(等价类)。如下图:
在这里插入图片描述
子图: G ′ G' G的点和边都属于 G G G
诱导子图: G ′ G' G的点属于 G G G,且连接点的所有边都要属于 G ′ G' G

在这里插入图片描述

邻接表Adj:用链表连接每个点的边。因此是遍历了每个点和每条边,因此时间复杂度 T ( n ) = O ( V + E ) T(n)=O(V+E) T(n)=O(V+E)
在这里插入图片描述
邻接矩阵: A = [ a i j ] , a i j = 1 A=[a_{ij}],a_{ij}=1 A=[aij],aij=1   i f ( v i , v j ) 属于 E if(v_i,v_j)属于E if(vi,vj)属于E,否则 a i j = 0 a_{ij}=0 aij=0
因为不管怎样任意两点间有无边都要判断一遍,因此时间复杂度 T ( n ) = O ( V 2 ) T(n)=O(V^2) T(n)=O(V2)
在这里插入图片描述

二、广度优先搜索(BFS)

用处:遍历图中的所有顶点,从而显示图的属性

记录

三个数组用于保存遍历期间收集的信息。

  1. c o l o r [ u ] color[u] color[u]:访问的每个顶点的颜色
    W H I T E WHITE WHITE:未发现
    G R A Y GRAY GRAY:已发现但未完成处理
    B L A C K BLACK BLACK:已完成处理
  2. p r e d [ u ] pred[u] pred[u]:前一个指针:指向发现u的顶点
  3. d [ u ] d[u] d[u]:从源到顶点u的距离

伪代码

BFS(G)
for u in V do
	color[u] ← WHITE;
	pred[u] ← NULL;
end
for u in V do
	if color[u] is equal to WHITE then
		BFSVisit(u);
	end
end

BFSVisit(s)
color[s] ← GRAY,d[s] ← 0;
set Q a queue
Enqueue(Q,s)
while Q is not empty do
	u ← Dequeue(Q)
	for v is belong to Adj[u] do   (邻接表遍历的)
		if(color[v] = WHITE) then
			color[u] ← GRAY
			d[v] ← d[u]+1
			pred[v] ← u
			Enqueue(Q,v)
		end
	end
	color[u] ← BLACK
end

时间复杂度

每一次循环遍历,都是遍历一个点和其边,且边遍历过了其他边就不会再遍历,因此
T ( n ) = ∑ O ( 1 + d e g r e e ( u ) ) = O ( V + E ) T(n)=\sum O(1+degree(u))=O(V+E) T(n)=O(1+degree(u))=O(V+E)

流程

一次BFSVisit,能将连通分量遍历完
在这里插入图片描述

应用

  1. 最短路径问题
  2. 查找连通分量

三、深度优先搜索(DFS)

用处:同样也是遍历图中的所有顶点,从而显示图的属性

记录

四个数组用于保存遍历期间收集的信息。

  1. c o l o r [ u ] color[u] color[u]:访问的每个顶点的颜色
    W H I T E WHITE WHITE:未发现
    G R A Y GRAY GRAY:已发现但未完成处理
    B L A C K BLACK BLACK:已完成处理
  2. p r e d [ u ] pred[u] pred[u]:前一个指针:指向发现u的顶点
  3. d [ u ] d[u] d[u]:发现时间。(设置一个全局变量时间发生器)
  4. f [ u ] f[u] f[u]:结束时间。一个计数器,指示顶点u(及其所有后代)的处理何时完成

伪代码

DFS(G)
for u in V do
	color[u] ← WHITE;
	pred[u] ← NULL;
end
 time  ← 0
for u in V do
	if color[u] is equal to WHITE then
		DFSVisit(u);
	end
end

DFSVisit(u)
color[u] ← GRAY,d[u] ← ++time;
set Q a queue
Enqueue(Q,s)
for v is belong to Adj[u] do   (邻接表遍历的)
	if(color[v] = WHITE) then
		pred[v] ← u
		DFSVisit(v)
	end
end
color[u] ← BLACK
f[u] ← ++time;

时间复杂度

同样,每一次循环遍历,都是遍历一个点和其边,且边遍历过了其他边就不会再遍历,因此
T ( n ) = ∑ O ( 1 + d e g r e e ( u ) ) = O ( V + E ) T(n)=\sum O(1+degree(u))=O(V+E) T(n)=O(1+degree(u))=O(V+E)

流程

在这里插入图片描述

时间戳结构

在这里插入图片描述
由图可知, u u u v v v的后代(在 D F S DFS DFS树中),当且仅当 [ d [ u ] , f [ u ] ] [d[u],f [u]] [d[u],f[u]] [ d [ v ] , f [ v ] ] [d[v],f [v]] [d[v],f[v]]的子区间

树边: i f ( u , v ) ∈ E f if (u, v)∈E_f if(u,v)Ef等价 u = p r e d [ v ] u = pred[v] u=pred[v],即 u u u D F S DFS DFS树中 v v v的前身(图中蓝色边)
后边缘:如果 v v v D F S DFS DFS树中 u u u的祖先(不包括前身)(图中红色边)
有边就有祖先和后代的关系
在这里插入图片描述

BFS和DFS比较

BFS是发现点之后先处理,DFS是发现点之后不处理,继续往下去找其他的点。

四、拓扑排序

一些概念

有向图

有向图,区分边(u, v)和边(v, u)
顶点的出界度是离开它的边的数量,顶点的入界度是进入它的边的数量
每条边(u, v)对u的出阶贡献1次,对v的入阶贡献1次
∑ o u t − d e g r e e ( v ) = ∑ i n − d e g r e e ( v ) = ∣ E ∣ \sum out-degree(v)=\sum in-degree(v)=|E| outdegree(v)=indegree(v)=E

作用

有向图通常用于表示顺序相关的任务,也就是说,我们不能在另一个任务完成之前启动一个任务。
边(u, v)表示任务u完成后才能启动任务v。
显然,要使系统不挂起,图必须是无环的,它必须是有向无环图(或DAG)

拓扑排序

拓扑排序是一种针对有向无环图的算法,对顶点进行线性排序,使得对于DAG中的每条边(u, v), u在线性排序中出现在v之前。
它可能不是唯一的,因为有许多“不兼容”的元素。

分析

  1. 起始顶点入度必须为0,如果这样的顶点不存在,图就不是无环的。
  2. 一个入度为0的顶点是一个可以马上开始的任务。所以我们可以先以线性顺序输出它.
  3. 如果输出一个顶点u,那么所有的边(u, v)都不再有用,因为任务v不再需要等待u。
  4. 去掉顶点u后,新图仍然是一个有向无环图
  5. 重复步骤2-4,直到没有顶点留下

伪代码

Initialize Q to be an empty queue
for u is belong to V do then
	if u.in_degree is equal to 0 then
		Enqueue(Q,u)
	end
end
while Q is not empty do
	u ← Dequeue(Q)
	Output u;
	for v is belong to Adj(u) do
		v.in_degree ← v.in_degree-1
		if v,in_degree is equal to 0 then
			Enqueue(Q,v)
		end
	end
end

时间复杂度

依旧是每条边和每个顶点都遍历一遍,因此时间复杂度 T ( n ) = O ( V + E ) T(n)=O(V+E) T(n)=O(V+E)

彩蛋

也可用DFS求出拓扑序列,对于每个有向边,都有 f [ u ] > f [ v ] f[u]>f[v] f[u]>f[v]

在时间O(V+E)内计算出 D A G DAG DAG(有向无环图)中的单源最短路径:动态规划

五、强连通分量-SCC

任意两点之间都有路径,再增加一个点都不满足这个关系。
任何两个强连通分量交集都为空
在这里插入图片描述
找到一个算法,求一个图得所有连通分量

分析

  1. 对G中所有边的方向进行反转,得到逆图GR。
  2. 执行DFS,并获得GR中顶点变黑的序列,即每当一个顶点从堆栈中弹出时,将其附加到序列 L R L^R LR中,将 L R L^R LR倒序得到序列L
  3. 对原图G执行DFS,规则如下
    规则1:从L的第一个顶点开始DFS
    规则2:当需要重新开始时,从L的第一个仍然是白色的顶点开始
    将每个dfs树中的顶点输出为SCC
    在这里插入图片描述

伪代码

R ← {}
Reverse G and get G'
DFS G' and get L'
reverse L' and get L
for u属于L do
	if color[u] is WHITE then
		Lscc ← DFSVisit(G,u)
		R ← RUSet(Lscc)
	end
end

时间复杂度

翻转边需要遍历每个点和边,时间复杂度为 O ( V + E ) O(V+E) O(V+E),DFS时间复杂度为 O ( V + E ) O(V+E) O(V+E),,然后还是依次遍历每个点和边,时间复杂度也是 O ( V + E ) O(V+E) O(V+E),因此总时间复杂度为 T ( n ) = O ( V + E ) T(n)=O(V+E) T(n)=O(V+E)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/173157.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

阿里云oss存储文件上传功能实现(保姆级教程)

先登录&#xff1a; 点击进入控制台 点击左上角导航栏按钮 搜索oss&#xff0c;点击进入 进入之后点击立即开通oss按钮&#xff0c;开通之后点击下图立即创建&#xff0c;弹出创建Bucket 填上Bucket名称&#xff0c;读写权限改为公共读。其他不变点击确定创建&#xff0c;完成…

uniapp、微信小程序返回上页面刷新数据

目录 前言&#xff1a; 方法1&#xff1a; 方法2&#xff1a; 方法3&#xff1a; 前言&#xff1a; 返回上页面刷新数据这个功能主要用于在当前页面点击跳转到另一个页面之后&#xff0c;在另一个页面对数据进行了操作&#xff0c;比如&#xff1a;阅读量&#xff0c;然后返…

计算机组成原理-主存储器与CPU的连接

文章目录 知识总览单块存储芯片与CPU的连接位扩展&#xff08;存储字的位数&#xff09;字扩展&#xff08;存储字数&#xff09;关于线选法和片选法字位同时扩展总结补充&#xff1a;译码器 知识总览 单块存储芯片与CPU的连接 数据总线&#xff0c;地址总线&#xff0c;片选线…

Web 自动化神器 TestCafe—页面基本操作篇

前 言 Testcafe是基于node.js的框架&#xff0c;以操作简洁著称&#xff0c;是web自动化的神器 今天主要给大家介绍一下testcafe这个框架和页面元素交互的方法。 一、互动要求 使用 TestCafe 与元素进行交互操作&#xff0c;元素需满足以下条件&#xff1a;☟ 元素在 body 页…

迅为RK3568开发板学习之Linux驱动篇第十三期输入子系统

驱动视频全新升级&#xff0c;并持续更新~更全&#xff0c;思路更科学&#xff0c;入门更简单。 迅为基于iTOP-RK3568开发板进行讲解&#xff0c;本次更新内容为第十三期&#xff0c;主要讲解输入子系统&#xff0c;共计24 讲。 关注B站&#xff1a;北京迅为电子&#xff0c;在…

Parallel Diffusion Models of Operator and Image for Blind Inverse Problems

盲逆问题算子和图像的并行扩散模型 论文链接&#xff1a;https://arxiv.org/abs/2211.10656 项目链接&#xff1a;https://github.com/BlindDPS/blind-dps Abstract 在正向算子已知的情况下(即非盲)&#xff0c;基于扩散模型的逆问题求解器已经展示了最先进的性能。然而&…

OSG文字-各种文字效果(边框、阴影及颜色倾斜)示例(2)

各种文字效果(边框、阴影及颜色倾斜)示例 各种文字效果(边框、阴影及颜色倾斜)示例的代码如程序清单9-2所示&#xff1a; 1. /* 各种文字效果(边框、阴影及颜色倾斜)示例 */ 2. osg::ref_ptr<osg::Camera> createAllKindText(const string &strDataFolder) 3. {…

华为云cce中环境变量的使用

如上图&#xff0c;cce中的环境变量可配置。 配置后的这些参数怎么用呢&#xff1f; 我们可以在docker打包前在springboot的配置文件中配置&#xff0c;cce在启动的时候会调用环境变量中的设置。 如上图&#xff0c;配置的东西以key值标记&#xff0c;冒号后面的是默认配置项…

YOLO改进系列之注意力机制(GatherExcite模型介绍)

模型结构 尽管在卷积神经网络&#xff08;CNN&#xff09;中使用自底向上的局部运算符可以很好地匹配自然图像的某些统计信息&#xff0c;但它也可能阻止此类模型捕获上下文的远程特征交互。Hu等人提出了一种简单&#xff0c;轻量级的方法&#xff0c;以在CNN中更好地利用上下…

ssm+vue的药店药品信息管理系统(有报告)。Javaee项目,ssm vue前后端分离项目。

演示视频&#xff1a; ssmvue的药店药品信息管理系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;ssm vue前后端分离项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结…

Run Legends将健身运动游戏化,使用户保持健康并了解Web3游戏

最近&#xff0c;我们有机会采访Talofa Games的首席执行官兼创始人Jenny Xu&#xff0c;一起讨论游戏开发&#xff0c;Talofa Games是Run Legends这款健身游戏的开发工作室。她已经创作了超过一百款游戏&#xff0c;对于推动游戏的可能性并将她的创造力和叙事技巧带入她最喜爱的…

简单但好用:4种Selenium截图方法了解一下!

前言 我们执行UI自动化操作时&#xff0c;大多数时间都是不在现场的&#xff0c;出现错误时&#xff0c;没有办法第一时间查看到&#xff0c;这时我们可以通过截图当时出错的场景保存下来&#xff0c;后面进行查看报错的原因&#xff0c;Selenium中提供了几种截图的方法&#x…

【Linux学习笔记】基础IO

这里写目录标题 1. 系统文件I/O1.1. 接口介绍1.2. 库函数接口与系统接口的关系 2. 文件描述符fd2.1. 0&1&2文件描述符2.2. 文件描述符的分配规则2.3. 重定向2.4. 重定向系统调用2.5. 进程独立性 3. Linux下一切皆文件4. 缓冲区4.1. 缓冲区的理解4.2. 缓冲区的位置 5. 理…

IDEA-运行测试方法提示Command line is too long

使用IDEA版本 执行时提示 处理方法&#xff1a; 1&#xff0c; 2&#xff0c;

【优秀毕设】基于vue+ssm+springboot的网上购物商城系统设计

摘 要 随着科学技术的飞速发展&#xff0c;社会的方方面面、各行各业都在努力与现代的先进技术接轨&#xff0c;通过科技手段来提高自身的优势&#xff0c;网上商城购物系统当然也不能排除在外。网上商城购物系统是以实际运用为开发背景&#xff0c;运用软件工程原理和开发方…

Hadoop-- hdfs

1、HDFS中的三个进程&#xff1a;NameNode&#xff08;NN&#xff09;、DataNode(DN)、SecondNameNode(SNN) 2、NameNode&#xff08;NN&#xff09; 1、作用&#xff1a; 1、接收客户端的一个读、写的服务&#xff0c;在namenode上存储了数据文件和datanode的映射的关系。 …

【封装UI组件库系列】全局样式的定义与重置

封装UI组件库系列第二篇样式​​​​​​​ ​​​​​​&#x1f31f;前言 &#x1f31f;定义全局样式 生成主题色和不同亮度的颜色 ​编辑 中性色及其他变量 &#x1f31f;样式重置 &#x1f31f;总结 ​​​​​​​​​​​​​​&#x1f31f;前言 在前端开发中&…

pygame播放视频并实现音视频同步

一、前言 在我接触pygame时最新的pygame已经不支持movie模块&#xff0c;这就导致在pygame播放视频变成一个问题&#xff0c;网上搜了下解决方案有两个&#xff1a; 一是使用opencv播放视频&#xff0c;再结合pygame.mixer来播放音频 二是使用moviepy播放视频&#xff0c;再…

【C++进阶之路】第四篇:set和map

文章目录 一、关联式容器健值对二、set & multiset三、map & multimap在这里插入图片描述 四、set和map底层原理 一、关联式容器健值对 关联式容器 & 键值对 二、set & multiset set & multiset 三、map & multimap map & multimap 四、set和…

自己动手打包构建编译cri-dockerd

1.背景 本机是 armv7l架构cpu&#xff0c;发现官方文档中竟然没有&#xff0c;因此需要自己编译下&#xff1b; [rootcontainer0 ~]# uname -a Linux container0 5.4.206-v7l.1.el7 #1 SMP Mon Jul 25 14:13:29 UTC 2022 armv7l armv7l armv7l GNU/Linux2.打包/构建/编译 gi…