基于知识问答的上下文学习中的代码风格11.20

基于知识问答的上下文学习中的代码风格

  • 摘要
  • 1 引言
  • 2 相关工作
  • 3 方法
    • 3.1 概述
    • 3.2 元函数设计
    • 3.3 推理
  • 4 实验
    • 4.1 实验设置
    • 4.2 实施细节
    • 4.3 主要结果

在这里插入图片描述

摘要

现有的基于知识的问题分类方法通常依赖于复杂的训练技术和模型框架,在实际应用中存在诸多局限性。最近,大型语言模型(LLM)中出现的上下文学习(ICL)功能为KBQA提供了一个简单且无需训练的语义解析范例:给定少量问题及其标记的逻辑形式作为演示示例,LLM可以理解任务意图并生成新问题的逻辑形式。然而,目前功能强大的LLM在预训练期间几乎没有暴露于逻辑形式,导致高格式错误率。为了解决这个问题,我们提出了一种代码风格的上下文学习方法的KBQA,它转换到更熟悉的代码生成过程中的LLM的不熟悉的逻辑形式的生成过程。在三个主流数据集上的实验结果表明,该方法极大地缓解了生成逻辑表单时的格式错误问题,同时在少镜头设置下在WebQSP、GrailQA和GraphQ上实现了新的SOTA。

1 引言

基于知识的问答(KBQA)是NLP社区长期研究的问题。由于问题的复杂性和多样性,性能良好的模型通常具有复杂的建模框架或特殊的训练策略。然而,这些设计也导致模型需要大量的标记数据来帮助参数收敛,导致它们难以应用于新的领域。最近,大型语言模型(LLM)具有强大的泛化能力,受益于大量自然语言语料库和开源代码的预训练(图1顶部)。此外,上下文学习(ICL)功能的出现允许LLM在观察少量标记数据的同时完成复杂的推理任务。
在这里插入图片描述
KB-BINDER是第一个基于ICL范式的KBQA方法。具体来说,KB-BINDER使用多个(问题,逻辑形式)对作为演示示例,并引导LLM生成正确的逻辑形式根据这些演示示例,查看新问题(图1中)。

然而,我们发现这种最新的方法仍然存在几个严重的问题:

  • (1)高格式错误率。由于逻辑形式的高度专业化,它们很难全部出现在LLM的训练语料中。因此,通过几个演示示例来生成具有正确格式的逻辑形式是具有挑战性的。在我们的初步实验中,强大的GPT3.5-turbo生成的逻辑形式在GrailQA上的格式错误率超过15%。如果没有繁琐的句法分析和纠错步骤,生成的逻辑形式甚至不能提供问题的最终答案;
  • (2)低零样本泛化性能。在零样本泛化场景中,与测试问题相关的知识库(KB)领域架构先验无法通过训练集中的数据获得。换句话说,这意味着从训练集创建的演示示例在这种情况下,无法提供足够的信息来回答问题。考虑到标注的数据通常只覆盖知识库中的一小部分知识,这个问题不可避免地会影响到实际应用的性能。

要解决这些问题,关键是要深入了解LLM的行为。值得庆幸的是,一些关于LLM的经验观察提供了理想的见解,其中包括

  • (1) 将原始任务转换为代码生成任务将降低后处理的难度;
  • (2) 逐步推理可以提高LLM在复杂推理任务上的性能;
  • (3) 检索增强有助于LLM处理不常见的事实知识。

受上述有价值的观察的启发,我们为KBQA提出了一种新的代码风格的上下文学习方法,它将逻辑形式的一步生成过程转换为Python中函数调用(Function Call)的渐进生成过程(图1底部)。
在这里插入图片描述
具体来说,我们首先为S-Expression定义了七个元函数,S-Expression是KBQA的一种流行逻辑形式,并在Python中实现了这些函数。请注意,此步骤使所有S表达式能够通过有限数量的预定义元函数调用生成。对于一个测试问题,我们在训练集中抽取了一些(question,S-Expression)对,并将它们转换为(question,function call sequence),其中函数调用序列可以在Python解释器中执行以输出S-Expression。最后,元函数的Python实现、所有(问题、函数调用序列)对和测试问题以代码形式重新格式化,作为LLM的输入。并期望LLM为新问题补充一个完整的函数调用序列,以获得正确的逻辑形式。此外,我们还发现了一种简单有效的方法来提高零次泛化场景下的性能:将测试问题视为查询,在知识库中检索相关关系,并将该关系提供给LLM以供参考

我们的贡献可以总结如下:

  • 我们提出了一种新的代码风格的上下文学习方法的KBQA。与现有的方法相比,我们的方法可以有效地减少格式错误率的逻辑形式生成的LLM,同时提供额外的中间步骤在推理过程中。
  • 我们发现,提前提供与问题相关的关系作为LLM的参考可以有效地提高零次泛化场景中的性能。
  • 基于ICL方法设计了一个无需训练的KBQA模型KB-Coder。在WebQSP、GrailQA和GraphQ上的大量实验表明,我们的模型在少镜头设置下实现了SOTA。在允许访问完整训练集的同时,与当前的监督SOTA方法相比,无需训练的KB-Coder实现了具有竞争力或更好的结果。

2 相关工作

根据最新LLM调查中的定义,我们将参数大于10 B的模型视为LLM,包括T5(编码器-解码器)和GPT 3(仅解码器)等。由于篇幅原因,我们在本节中只介绍与LLM相关的工作。

使用Code-LLM进行复杂推理
Codex首先引入了一个代码语料库来训练LLM,并发现获得的code-LLM具有出色的逻辑推理能力。随后,code-LLM以两种方式用于各种复杂任务。
第一种方式只隐含地使用了来自代码预训练的推理能力,并提出了诸如思想链之类的技术和问题分解等,并以另一种方式将任务形式转化为代码生成,通过创建实例引导LLM实现最初的任务目标,互补代码或生成SQL或逻辑形式。

LLM问答
我们根据LLM生成内容的类型来区分不同的方法。

  • 第一类方法指导LLM直接生成答案。在这些方法中,将外部知识源中的知识转换为索引,然后将问题用作查询以通过稀疏或致密检索。然后将问题和相关知识拼接在一起,并输入LLM以直接生成答案。
  • 第二类方法将LLM视为答案选择器,并引导LLM从候选集合中选择正确答案。
  • 第三类方法将LLM视为语义解析器,并指导模型生成中间逻辑形式。

与直接生成答案相比,其他两类方法原则上可以消除生成假知识的风险,但无法实现端到端的方法。除了上述三个类,DECAF是一个特殊的情况,它指导LLM通过改变promp来生成逻辑形式和最终答案。

3 方法

3.1 概述

一般来说,我们提出的KBQA方法是一种基于语义分析的方法:
1)给定一个自然语言问题q和知识库 G = {(h,r,t),h,t ∈ E,r ∈ R},其中E是实体集,R是关系集,我们的方法可以被视为函数F,它将q映射到语义一致的逻辑形式 l l l = F(q)$ 。
2)然后将 l l l 转换为查询来执行,并将查询结果视为q的答案。具体来说,我们首先设计了七个元函数,它们可以覆盖特定逻辑形式的所有原子操作,并在Python中重新定义了这些元函数。
3)最后,对于一个新的问题,采用以下三个步骤来获得答案(图3):

  • 通过代码式的上下文学习方法,使用LLM获取其函数调用序列;
  • 在从函数调用中提取的实体提及(entity mentions)中,使用了一个密集型检索器来链接实体,同时使用另一个密集型检索器来匹配函数调用中提取的关系名(relation name)。
  • 程序解释器用于执行生成的函数调用序列以获得逻辑形式 l l l,该逻辑形式 l l l将被进一步执行以获得答案a。
    在这里插入图片描述

“Dense Retriever”(密集型检索器)是一种用于信息检索的组件或技术。它被设计用于从大规模的文本数据集中检索与给定查询相关的文档或句子。

3.2 元函数设计

在实践中,由于其简单性,我们使用S表达式作为逻辑形式 l l l。S表达式是一种用于嵌套列表(树结构)数据的类似名称的表示法,它符合“前缀表示法”的语法。具体来说,S-Expression通常由括号和其中的几个空格分隔的元素组成,其中第一个元素是函数名称,所有其余元素都是函数的属性。例如,对于“总共有多少个美国演讲者”的问题,其S表达式是:
其中m.09c7w0和m.015cjr是实体United States of America和Presenter的唯一标识符。这个S-Expression的对应树结构如图2的左侧所示。
在这里插入图片描述
基于S-Expression的原始语法,我们总共定义了七个元函数(表1),包括它们的名称,域,范围和映射描述。与原语法相比,对新的元函数进行了自适应修改,并在附录中进行了详细描述。
在这里插入图片描述
典型的上下文学习范例通常包括指令 I I I ,K演示示例D = {d1,d2,… ,dK}和新的查询Q。如果LLM的输出表示为C,我们可以将上下文学习的过程表示为:
在这里插入图片描述
其中fLLM表示特定LLM。在我们的方法中,我们使用代码样式来构造 I 、 D 和 Q I、D和Q IDQ,并期望模型来为Q生成一段代码——一个元函数调用序列,如下演示示例所示。接下来,我们将详细描述如何分别构建每个部分。

指令I 与以前的代码LLM类似,指令由两部分组成:用于描述任务的提示注释和七个元函数的代码实现。由于Codex在Python中的成功实践,我们选择Python来实现这些函数。那么, I I I的完整内容如下:
在这里插入图片描述
在这里插入图片描述
其中,所有七个函数都是表1中同名函数的实现。

演示示例D
每个演示示例都是从训练集中的(question,S-Expression)对创建的,包含两个部分:一个名为question的变量和一个函数调用序列。具体来说,字符串变量question由question赋值,而函数调用序列由S-Expression转换。图2的右侧提供了函数调用序列的示例,其中每个函数调用可以对应于树结构中的一个非叶节点。因此,函数调用序列也可以被认为是树结构的自底向上解析的结果。如果将Instruction中的元函数定义与函数调用序列作为一个整体代码拼接到Python解释器中,我们可以通过访问变量表达式的值来获得完整的SExpression。由于KB中的实体标识符(如m.03yndmb)丢失了它们的语义信息,因此我们将所有实体标识符映射到它们的表面名称,以帮助LLM获得这些实体的语义信息。最后,将与图2对应的演示示例重新表述如下:
在这里插入图片描述
为了获得D,我们在训练集中总共采样K(question,S-Expression),将每对转换为上述形式,并使用换行符将它们拆分。

新的查询Q
与演示示例的形式相比,新的查询是一段不完整的代码,只包含变量问题的一部分,例如,问题“融合有多少宗教文本”将被重新表述为
在这里插入图片描述
对于每个Q,期望LLM补充与具有上下文学习能力的问题相对应的剩余函数调用序列。

在实践中,I保持不变。对于D,我们可以为数据集中的每个Q提供一致的D,以遵循少数镜头设置,或者我们可以基于相似性为每个Q选择不同的D,以获得更好的性能。这两种设置都将在后续实验中进行研究。

3.3 推理

在本节中,我们将描述对LLM生成的函数调用序列进行后处理的方法,以便将它们转换为查询,最终获得预测的答案。

实体链接和关系匹配
回想一下,LLM不能直接查看KB中的信息,这使得生成完全正确的实体名称和关系名称变得困难。然而,我们认为,生成的名称具有较高的语义相似度与正确性,所以生成的名称可以被视为实体链接和关系匹配的提及。得益于我们对元功能域的严格定义,实体提及和关系提及都可以很容易地被解析。具体来说,对于实体链接,我们首先通过现成的嵌入模型SimCSE将KB中所有实体的所有表面名称转换为表示并使用Faiss构建实体索引。当链接实体提及时,我们首先使用HARD MATCH策略来获得与提及具有相同表面名称的所有实体作为候选集。如果候选集的大小大于超参数Me,我们将只保留最受欢迎的Me实体引用FACC1。相比之下,如果size小于Me,我们将从现有的实体索引中搜索最相似的实体来填充候选项,托姆。类似地,我们使用相同的技术来索引KB中的所有关系,并检索Mr个语义上最相似的关系作为每个生成的关系名称的候选者。

答案预测
不失一般性,我们假设函数调用序列包含p个要链接的实体和q个要匹配的关系,将第i个实体提及的候选集表示为Cie,将第j个关系提及的候选集表示为Cjr。然后,我们可以获得有序元组集合在这里插入图片描述在这里插入图片描述
其中×表示笛卡尔积。对于集合中的每个有序元组,让有序元组中的每个元素逐一替换函数调用序列中相应的生成名称,我们可以获得整个函数调用序列的候选项(图3)。最后,将(Me)P.(Mr)q 每个函数调用序列的候选项,对于某些特殊情况,这可能是一个巨大的数字。因此,我们会逐一执行函数调用序列,得到S-Expression,然后将SExpression转换为SPARQL执行,一旦查询到的结果不为null,我们就直接终止逐一尝试的过程,将查询到的结果视为问题的答案。

一种零样本泛化相关关系
码式上下文学习的相关关系使LLM更适应任务形式,从而降低格式错误率。然而,当查询域不涉及演示示例时,这被称为零样本泛化场景,LLM的性能仍然很差。这并不难理解,因为任务提示形式的变化并没有给LLM带来查询领域的新的额外知识。在分析了初步实验中的不良情况后,我们发现错误的最大问题是关系匹配,其中LLM生成的关系通常无法在零样本泛化场景下命中正确的关系。随后,我们通过为LLM提供额外的关系名称来缓解这个问题。具体来说,我们使用整个测试问题作为查询,从关系索引中检索相似关系,并将具有最高相似度的关系插入演示示例D和新问题Q之间,注释格式如下:
在这里插入图片描述
基于初步的实验,观察到一个关系带来最好的性能和更多的关系,性能上的改善不大。我们将分析关系的数量对结果的影响在实验部分有详细说明。

4 实验

4.1 实验设置

在这里插入图片描述

4.2 实施细节

在没有特别说明的情况下,我们报告了Me = 15和Mr = 100的实验结果。SimCSE实例sup-simcse-bert-base-uncased 2用于获得密集表示。与KBBINDER一致,我们对WebQSP和GraphQ进行了100次拍摄,对GrailQA进行了40次拍摄。在下面的部分中,我们使用不同的符号来表示不同的变体:

  • KB-Coder(1):从训练集中随机抽取固定问题作为演示示例。LLM仅生成1个候选。
  • KB-Coder(6):使用KBCoder(1)和LLM的相同采样设置生成6个候选项,并使用多数投票策略(Wang et al. 2022)来选择最终答案。由于LLM的自洽性,性能有望进一步提高。
  • KB-Coder(1)-R:选择与测试问题最相似的问题作为演示示例。LLM仅生成1个候选。·
  • KB-Coder(6)-R:与KBCoder(1)-R和LLM相同的采样策略生成6个候选,并使用多数投票策略来选择最终答案。

请注意,KB-Coder(1)和KB-Coder(6)严格地在少样本设置下,而其他两个变体则是在可以访问整个训练集时探索性能的上限。对于每个设置,我们重复三次,并报告平均值和标准差。

4.3 主要结果

我们在表2、表3和表4中报告了KB-Coder和其他基线在GrailQA、WebQSP和GraphQ上的性能。接下来,我们将分别分析格式错误率(FER)和性能指标(EM和F1)。回想一下,将逻辑表单生成转换为代码生成的动机之一是允许LLM执行更熟悉的任务,以确保生成的内容的格式的正确性。在所有三个数据集上的性能成功地验证了我们的方法在少镜头设置下的有效性:(1)在问题更简单的WebQSP上,现有方法生成的逻辑形式具有较低的FMR,但KB-Coder仍然可以进一步将FMR降低到更低的水平;(2)在问题复杂度较高的GrailQA和GraphQ上,KB-Coder比直接生成逻辑形式的两种方法有明显的提高;(3)利用LLM的自一致性,多数表决策略有助于缓解KBBINDER格式错误率问题。而KB-Coder可以使用多数票策略来推动FMR的新低。得益于较低的FER,与KB-BINDER相比,三个数据集的F1得分(或EM)在几乎所有设置下都有显著提高,特别是在两个没有引入多数票策略的设置下。(1)在WebQSP和GraphQ上,与全监督方法相比,无需训练的KB-Coder(6)-R实现了具有竞争力的结果,而我们的方法进一步缩小了与GrailQA上的全监督模型相比,KBCoder的性能下降;(2)与KB-BINDER相比,KBCoder通常在无依赖下获得实质性的领先,反映了我们方法的潜在性能更好;(3)与KB-BINDER相比,KB-Coder的性能波动更剧烈,这是我们在未来工作中需要重点解决的问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/172803.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

redis运维(十二)

一 位图 ① 概念 1、说明:位图还是在操作字符串2、位图玩字符串在内存中存储的二进制3、ASCII字符通过映射转化为二进制4、操作的是字符串value ② ASCII字符铺垫 1、控制ASCII字符 2、ASCII可显示字符 ③ SETBIT 细节: setbit 命令的返回值是之…

算法分析与设计课后练习22

设W(5,7,10,12,15,18,20)和M35,使用过程SUMOFSUB找出W种使得和数等于M的全部子集并画出所生成的部分状态空间树

打破传统束缚,释放服务潜能:本地生活服务商聚合系统引领行业新风向!

本地生活服务商聚合系统是一种集合多平台、多项目的创新型服务系统,它打破了传统服务商系统的一对一限制,为创业者和运营商带来了诸多优势。小多将深入探讨本地生活服务商聚合系统的优势。 随着互联网的快速发展,本地生活服务也迎来了蓬勃的发…

Java实现围棋算法

围棋是一种源自中国的棋类游戏,也是世界上最古老、最复杂的棋类游戏之一。该游戏由黑白两方交替放置棋子在棋盘上进行,目的是将自己的棋子占据更多的空间,并将对手的棋子围死或吃掉,最终获得胜利。围棋不仅是一种游戏,…

审计dvwa高难度命令执行漏洞的代码,编写实例说明如下函数的用法

审计dvwa高难度命令执行漏洞的代码 &#xff0c;编写实例说明如下函数的用法 代码&#xff1a; <?phpif( isset( $_POST[ Submit ] ) ) {// Get input$target trim($_REQUEST[ ip ]);// Set blacklist$substitutions array(& > ,; > ,| > ,- > ,$ …

PACS系统源码,WORKLIST数字化工作流程,影像数字化存储,电子报告书写、胶片打印

PACS系统源码 可与医院HIS、LIS无缝连接 PACS系统以实现医学影像数字化存储、诊断为核心任务&#xff0c;从医学影像设备&#xff08;如CT、CR、DR、MR、DSA、RF等&#xff09;获取影像&#xff0c;集中存储、综合管理医学影像及病人相关信息&#xff0c;建立数字化工作流程。 …

Linux 环境配置小白入门

Linux从 全栈开发centOS 7 到 运维 一 Linux 入门概述1.1 操作系统1.2 Linux 简介1.3 Linux 系统组成1.4 Linux 发行版1.5 Linux 应用领域1.6 Linux vs Windows 二 虚拟机2.1 虚拟机介绍2.2 VMware WorkStation 安装2.3 VMware WorkStation 配置检查2.3 安装 CentOS 72.3.1 安装…

PIL如何批量给图片添加文字水印?

PIL如何批量给图片添加文字水印&#xff1f; 1 简单引入2 关于PIL3 本文涉及的PIL的几个类4 实现原理5 实现过程5.1 原始图片5.2 导入相关模块5.3 初始化数据5.4 水印字体设置5.5 打开原始图片并新建存储对象5.6 计算图片和水印的大小5.7 选择性设置水印文字5.8 绘制文字并设置…

ChatGPT/GPT4科研实践应用与AI绘图技术及论文高效写作

2023年随着OpenAI开发者大会的召开&#xff0c;最重磅更新当属GPTs&#xff0c;多模态API&#xff0c;未来自定义专属的GPT。微软创始人比尔盖茨称ChatGPT的出现有着重大历史意义&#xff0c;不亚于互联网和个人电脑的问世。360创始人周鸿祎认为未来各行各业如果不能搭上这班车…

高防CDN如何预防攻击?

现在网络攻击事件越来越多&#xff0c;而且愈发凶猛&#xff0c;为了保障互联网业务能稳定正常的运行&#xff0c;市场上出现了很多高防产品&#xff0c;例如高防服务器、高防IP、高防CDN等等。其中究竟高防CDN怎么防攻击&#xff0c;能防哪些攻击&#xff1f;高防CDN如何实现防…

【PostgreSQL】解决PostgreSQL时区(TimeZone)问题

问题描述 最近在使用PostgreSQL中&#xff0c;对行记录进行设置创建时间&#xff08;created_time&#xff09;时&#xff0c;出现了设置了now()时间而数据库中写入的数据是不一致的数据。 eg&#xff1a; insert into dept ( created_at, updated_at) VALUES (now(),now())…

结合两个Python小游戏,带你复习while循环、if判断、函数等知识点

&#x1f490;作者&#xff1a;insist-- &#x1f490;个人主页&#xff1a;insist-- 的个人主页 理想主义的花&#xff0c;最终会盛开在浪漫主义的土壤里&#xff0c;我们的热情永远不会熄灭&#xff0c;在现实平凡中&#xff0c;我们终将上岸&#xff0c;阳光万里 ❤️欢迎点…

一文概括AxureRP的优缺点和替代软件

AxureRP是目前流行的设计精美的用户界面和交互软件。AxureRP根据其应用领域提供了一组丰富的UI控制。 Axure是什么软件&#xff1f; Axure是目前流行的设计精美的用户界面和交互软件。Axure已经存在了近十年&#xff0c;让UX设计师轻松了解创建软件原型的细节。作为一种原型设…

nvm管理node版本过程记录

写在前面 今天记录一下windows电脑安装nvm同时使用nvm管理node版本的&#xff0c;为什么写windows版本的呢&#xff1f;因为mac版本的基本上是不需要进行记录的&#xff0c;相对windows的安装是简单很多的&#xff0c;行了废话不多说&#xff0c;我们直接开始 安装nvm nvm下载…

如何使用rclone将腾讯云COS桶中的数据同步到华为云OBS

在多云策略与数据迁移趋势下&#xff0c;企业往往需要将数据在不同云服务提供商之间进行迁移。本文介绍如何使用rclone工具同步腾讯云COS&#xff08;Cloud Object Storage&#xff09;桶中的数据到华为云OBS&#xff08;Object Storage Service&#xff09;。先决条件是您已经…

Vue Router的使用

Vue.js是一个流行的JavaScript框架&#xff0c;用于开发单页面应用程序。Vue提供了一个强大的路由系统&#xff0c;可以帮助我们管理应用程序中的不同页面。在本文中&#xff0c;我们将详细讲解Vue路由的使用方法。 目录 1. 安装Vue Router2. 创建路由实例3. 配置路由4. 在模板…

六、流量监管、流量整形

流量监管、流量整形 流量监管、流量整形1.1.定义1.2.简单流分类应用场景举例1.3.简单流分类的配置1.4.复杂流分类1.5.复杂流分类在产品中的实现 ————————————————— 流量监管、流量整形 当报文的发送速率大于接收速率&#xff0c;或者下游设备的接口速率小于…

gitlab 实战

一.安装依赖 yum install -y curl policycoreutils-python openssh-server perl 二.安装gitlab yum install gitlab-jh-16.0.3-jh.0.el7.x86_64.rpm 三.修改下面的 vim /etc/gitlab/gitlab.rbexternal_url http://192.168.249.156 四.初始化 gitlab-ctl reconfigure 五.查看状…

SwiftUI 如何动态开始和停止播放永久重复(repeatForever)动画

0. 功能需求 在 SwiftUI 丰富多彩的动画世界中,我们有时希望可以随意开始和停止永久循环(repeatForever)的动画,不过这时往往会产生错误的动画“叠加”效果。 从上图可以看到:虽然我们希望密码输入框背景只在用户输入密码时才发生闪烁,但顶部的密码输入框随着不断输入其…

第一次参加算法比赛是什么感受?

大家好&#xff0c;我是怒码少年小码。 冬日暖阳&#xff0c;好日常在。今天中午在食堂干饭的时候&#xff0c;我的手机&#x1f4f1;收到了一条收货信息。 阿&#xff1f;什么玩意儿&#xff1f;我又买啥了&#xff1f; 个败家玩意&#xff0c;我都准备好叨叨我自己&#x…