Python实现WOA智能鲸鱼优化算法优化随机森林回归模型(RandomForestRegressor算法)项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

1.项目背景

鲸鱼优化算法 (whale optimization algorithm,WOA)是 2016 年由澳大利亚格里菲斯大学的Mirjalili 等提出的一种新的群体智能优化算法,其优点在于操作简单,调整的参数少以及跳出局部最优的能力强。

本项目通过WOA智能鲸鱼优化算法寻找最优的参数值来优化随机森林回归模型。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下:

编号 

变量名称

描述

1

x1

2

x2

3

x3

4

x4

5

x5

6

x6

7

x7

8

x8

9

x9

10

x10

11

y

因变量

数据详情如下(部分展示):

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

关键代码:

3.2 数据缺失查看

使用Pandas工具的info()方法查看数据信息:

   

从上图可以看到,总共有11个变量,数据中无缺失值,共1000条数据。

关键代码:  

3.3 数据描述性统计

通过Pandas工具的describe()方法来查看数据的平均值、标准差、最小值、分位数、最大值。

关键代码如下:    

4.探索性数据分析

4.1 y变量直方图

用Matplotlib工具的hist()方法绘制直方图:

从上图可以看到,y变量主要集中在-400~400之间。

4.2 相关性分析

从上图中可以看到,数值越大相关性越强,正值是正相关、负值是负相关。

5.特征工程

5.1 建立特征数据和标签数据

关键代码如下:

5.2 数据集拆分

通过train_test_split()方法按照80%训练集、20%测试集进行划分,关键代码如下:

6.构建WOA智能鲸鱼优化算法优化随机森林回归模型

主要使用WOA智能鲸鱼优化算法优化随机森林回归算法,用于目标回归。

6.1 WOA智能鲸鱼优化算法寻找的最优参数   

最优参数:

   

6.2 最优参数值构建模型

编号

模型名称

参数

1

随机森林回归模型

max_depth=best_max_depth

2

n_estimators=best_n_estimators

7.模型评估

7.1 评估指标及结果

评估指标主要包括可解释方差值、平均绝对误差、均方误差、R方值等等。

模型名称

指标名称

指标值

测试集

随机森林回归模型

  R方

0.8779

均方误差

2066.0262

可解释方差值

0.8779

平均绝对误差

35.6812

从上表可以看出,R方0.8779,为模型效果较好。

关键代码如下:

7.2 真实值与预测值对比图

从上图可以看出真实值和预测值波动基本一致,模型拟合效果良好。    

8.结论与展望

综上所述,本文采用了WOA智能鲸鱼优化算法寻找随机森林回归算法的最优参数值来构建回归模型,最终证明了我们提出的模型效果良好。此模型可用于日常产品的预测。


# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:

链接:https://pan.baidu.com/s/1mZ6q-BXjltgQxUU1iS-NKA 
提取码:n1hc


更多项目实战,详见机器学习项目实战合集列表:

机器学习项目实战合集列表_机器学习实战项目_胖哥真不错的博客-CSDN博客


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/171790.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

基于单片机设计的气压与海拔高度检测计(采用MPL3115A2芯片实现)

一、前言 随着科技的不断发展,在许多领域中,对气压与海拔高度的测量变得越来越重要。例如,对于航空和航天工业、气象预报、气候研究等领域,都需要高精度、可靠的气压与海拔高度检测装置。针对这一需求,基于单片机设计…

基于SSM的学院网站设计与实现

末尾获取源码 开发语言:Java Java开发工具:JDK1.8 后端框架:SSM 前端:Vue 数据库:MySQL5.7和Navicat管理工具结合 服务器:Tomcat8.5 开发软件:IDEA / Eclipse 是否Maven项目:是 目录…

2024年测试工程师必看比列之Unittest单元测试框架-知识点总结

unittest单元测试框架 1.导入unittest包 2.创建类的时候要继承与unittest.TestCase类 2.1,setUp方法是在类中测试执行前的初始化工作 2.2,tearDown方法是在类中测试执行后的清除工作 2.3,测试用例函数以test开头的方法是普通的测试用例方法&…

基于单片机的公共场所马桶设计(论文+源码)

1.系统设计 本课题为公共场所的马桶设计,其整个系统架构如图2.1所示,其采用STC89C52单片机为核心控制器,结合HC-SR04人体检测模块,压力传感器,LCD1602液晶,蜂鸣器,L298驱动电路等构成整个系统&…

通达信吊灯止损指标公式,根据波动幅度自动调整止盈止损

吊灯止损指标是由查克勒博(Chuck LeBeau)发明的,亚历山大埃尔德(Alexander Elder)在其著作《走进我的交易室》中介绍了这种止盈止损方法(中文版翻译为倒挂式离场法则),它是根据平均真实波幅ATR设置跟踪止损。吊灯止损指标的目的是…

使用 LCM LoRA 4 步完成 SDXL 推理

LCM 模型 通过将原始模型蒸馏为另一个需要更少步数 (4 到 8 步,而不是原来的 25 到 50 步) 的版本以减少用 Stable Diffusion (或 SDXL) 生成图像所需的步数。蒸馏是一种训练过程,其主要思想是尝试用一个新模型来复制源模型的输出。蒸馏后的模型要么尺寸…

论文阅读:“基于特征检测与深度特征描述的点云粗对齐算法”

文章目录 摘要简介相关工作粗对齐传统的粗对齐算法基于深度学习的粗对齐算法 特征检测及描述符构建 本文算法ISS 特征检测RANSAC 算法3DMatch 算法 实验结果参考文献 摘要 点云对齐是点云数据处理的重要步骤之一,粗对齐则是其中的难点。近年来,基于深度…

VM——绘制亮度均匀性曲线

1、需求:检测汽车内饰氛围灯的亮度均匀性,并绘制均匀性曲线 2、结果: 3、方法: 主要分为3步 (1)提取氛围灯ROI,忽略背景 (2)对提取到的ROI图进行切片处理,计算出每个切片的亮度均值 (3)绘制均匀性曲线 3.1 提取氛围灯ROI step1: 转成黑白图 step2:通过blob和…

【图像分类】【深度学习】【Pytorch版本】Inception-ResNet模型算法详解

【图像分类】【深度学习】【Pytorch版本】Inception-ResNet模型算法详解 文章目录 【图像分类】【深度学习】【Pytorch版本】Inception-ResNet模型算法详解前言Inception-ResNet讲解Inception-ResNet-V1Inception-ResNet-V2残差模块的缩放(Scaling of the Residuals)Inception-…

第1关:图的邻接矩阵存储及求邻接点操作

任务要求参考答案评论2 任务描述相关知识 顶点集合边集合编程要求测试说明 任务描述 本关任务:要求从文件输入顶点和边数据,包括顶点信息、边、权值等,编写程序实现以下功能。 1)构造无向网G的邻接矩阵和顶点集,即图…

配置文件自动提示

1、引入依赖<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-configuration-processor</artifactId> </dependency> 2、修改IDEA配置

mysql底层是如何存放数据的

总览 首先总的来说&#xff0c;分为四个层级&#xff0c;行页区段。行就是数据库里的一行数据。 但一次从磁盘读进内存的数据量是一页&#xff08;页是读写的单位&#xff0c;默认16KB一页&#xff09;&#xff0c;页分很多种类&#xff0c;例如数据页、溢出页、undo日志页。 …

OpenAI宫斗,尘埃落定,微软成最大赢家

周末被OpenAI董事会闹剧刷屏,ChatGPT之父Sam Altman前一天被踢出董事会,免职CEO,后一天重返OpenAI,目前结局未知。 很多同学想要围观,缺少背景知识,这里老章为大家简单介绍前因后果及涉及的人物,时间线,让大家轻松围观。 备好瓜子,开始。 1、主角 先看一张图,看一…

Java基于B/S架构,包括PC后台管理端、APP移动端、可视化数据大屏的智慧工地源码

智慧工地管理平台充分运用数字化技术&#xff0c;聚焦施工现场岗位一线&#xff0c;依托物联网、互联网、AI等技术&#xff0c;围绕施工现场管理的人、机、料、法、环五大维度&#xff0c;以及施工过程管理的进度、质量、安全三大体系为基础应用&#xff0c;实现全面高效的工程…

无人售货奶柜:颠覆传统零售行业的潜力黑马

无人售货奶柜&#xff1a;颠覆传统零售行业的潜力黑马 无人售货奶柜具备体积小、灵活运用空间、无需人工看守和自动结算等特点。相较于传统建店方式&#xff0c;它的成本大大降低&#xff0c;从而提高了运营效率。此外&#xff0c;无人售货奶柜独特的优势之一就是可以保持24小时…

【GUI】-- 11 贪吃蛇小游戏之绘制静态的小蛇

GUI编程 04 贪吃蛇小游戏 4.2 第二步&#xff1a;绘制静态的小蛇 现在绘制静态的小蛇(即小蛇初始位置)&#xff0c;并且完善游戏默认初始状态。这一步还在GamePanel类中实现。 首先&#xff0c;定义了小蛇的数据结构&#xff0c; //定义蛇的数据结构int length; //小蛇总长…

LeetCode【45】跳跃游戏2

题目&#xff1a; 思路&#xff1a; 注意和跳跃游戏【55】不同的是&#xff0c;题目保证可以跳到nums[n-1];那么每次跳到最大即可 代码&#xff1a; public class LeetCode45 {public static int jump(int[] nums) {int jumps 0;int currentEnd 0;int farthest 0;for(int…

案例研究|北京交通大学基于DataEase开展多场景校园数据分析与展示

北京交通大学是教育部直属&#xff0c;教育部、交通运输部、北京市人民政府和中国国家铁路集团有限公司共建的全国重点大学&#xff0c;是国家“211工程”“985工程优势学科创新平台”“双一流”建设高校。 多年来&#xff0c;北京交通大学积极发挥信息技术赋能学校人才培养、…

STM32 -Bin/Hex文件格式解析

文章目录 1. 概述2. Hex文件2.1 格式解析2.2 数据类型2.3 举例解析2.4 合并两个Hex文件方法 3 总结&#xff08;未完待续&#xff09; 1. 概述 Hex文件&#xff1a;它是单片机和嵌入式工程编译输出的一种常见的目标文件格式&#xff08;比如keil就能编译输出hex文件&#xff0…