图像的傅里叶变换

目录

​编辑

傅里叶基础

傅里叶基础numpy实现

逆傅里叶numpy实现

频域的高通滤波

傅里叶OpenCV实现

傅里叶OpenCV逆变换实现

频域的低通滤波

傅里叶变换有什么应用场景

傅里叶变换matlab实现


傅里叶基础

法国数学家吉恩·巴普提斯特·约瑟夫·傅里叶被世人铭记的最大的贡献是:他指出任何周期函数都可以表示为不同频率的正弦和/或余弦之和的形式,每个正弦项和/或余弦项乘以不同的系数(现在称该和为傅里叶级数)。无论函数多么复杂,只要它是周期的,并且满足某些适度的数学条件,都可以用这样的和来表示。即一个复杂的函数可以表示为简单的正弦和余弦之和。甚至非周期函数(单该曲线下的面积是有限的)也可以用正弦和/或许·余弦乘以加权函数的积分来表示。在这种情况下的公式就是傅里叶公式。

比如说我们以制作一个饮料的过程,使用时域的角度来看就是这样:

这里是什么意思呢,就是说一个饮料的制作需要在18点整放1个单位冰糖、3个单位红豆、2个单位的绿豆、4个单位的西红柿,还有1个单位的纯净水。然后再18:01分只需要假如一个单位的纯净水。后面也是一致。
而频域是怎么描述这件事的呢?

具体来说就是说他发现了一个规律,就是说这个制作过程,每分钟都要加入冰糖,每两分钟都要加入红豆,每三分钟都要加入一次绿豆…。
对于时域角度我们这样描述。

对于频域角度我们这样描述这件事,用直方图表示就是:

如果要考虑更精准的时间精度,我们就要引入相位这个概念。他是一个和时间差有关的一个表述。

这里我们说明一下就是时域和频域的表述是互逆的,对于时域我们是时间为横坐标,振幅为纵坐标。对于频域我们以频率为横坐标,振幅为纵坐标。但是可以看得出来频域的表述更加简单,但是比较抽象,不容易理解。
傅里叶说:任何连续周期信号,可以由一组适当的正弦曲线组合而成。
注意这里是一组而不是一个。比如对于这样的一个图像:
f(x)=3np.sin(0.8x)+7np.sin(1/3x)+2np.sin(0.2x)

看上去是毫无规律可言吧,但是它也可以由一组正弦函数组成。

他们是可逆的,想不到吧,乱七八糟的东西也有规律了。但是他们就是这样组合而成的吗?不可能吧,所以这里就是不是同时开始的一组余弦函数,在叠加时要体现开始的时间。也就说组合的函数他们的开始时间是不一样的。在这里分别对应0,2,3.看公式就看出来啦。
这里多说一嘴就是说傅里叶变换从时域角度来看,这个世界是动态的!从频域角度来看这个世界是静止的。
从数学角度来讲:傅里叶变换将一个任意的周期函数分解成为无穷个正弦函数的和的形式。
从物理角度来讲:傅里叶变换实现了将信号从空间域到频率域的转换。

傅里叶基础numpy实现

python是可以实现傅里叶变换的,这里就要说到三剑客的numpy了。对应的函数是:numpy.fft.fft2返回一个复数数组(complex ndarray)。numpy.fft.fftshift这个函数时表示把将零频率分量移到频谱中心。

还要设置频谱的范围20*np.log(np.abs(fshift)),对于图像来说就是255了。

import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread('image\\lena.bmp',0)
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)
result = 20*np.log(np.abs(fshift))
plt.subplot(121)
plt.imshow(img, cmap = 'gray')
plt.title('original')
plt.axis('off')
plt.subplot(122)
plt.imshow(result, cmap = 'gray')
plt.title('result')
plt.axis('off')
plt.show()

结果是:

原图和频谱图像。

  • 傅里叶得到低频、高频信息,针对低频、高频处理能够实现不同的 目的。
  • 傅里叶过程是可逆的,图像经过傅里叶变换、逆傅里叶变换后,能 够恢复到原始图像
  • 在频域对图像进行处理,在频域的处理会反映在逆变换图像上

逆傅里叶numpy实现

对于傅里叶的逆操作这里没有什么可说的,就是把频域图像转回原图像。

函数是:numpy.fft.ifft2,那么还有一个操作就是把中间移动回去对啊。numpy.fft.ifftshiftiimg = np.abs(逆傅里叶变换结果)而第二个图就表示低频部分,边缘就表示为高频部分。

import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread('image\\boat.bmp',0)
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)
ishift = np.fft.ifftshift(fshift)
iimg = np.fft.ifft2(ishift)
iimg = np.abs(iimg)
plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('original'),plt.axis('off')
plt.subplot(122),plt.imshow(iimg, cmap = 'gray')
plt.title('iimg'),plt.axis('off')
plt.show()

首先我们要进行傅里叶变换吧,才可以进行逆操作。结果是:

完全一致!!!

频域的高通滤波

首先我们来看看到底什么是高频,什么是低频在图像中如何理解。
低频对应图像内变化缓慢的灰度分量。例如,在一幅大草原的图像中,低频对应着广袤的颜色趋于一致的草原。
高频对应图像内变化越来越快的灰度分量,是由灰度的尖锐过渡造成的。例如,在一幅大草原的图像中,其中狮子的边缘等信息。
对于滤波我们之前也了解过了,就是说过滤掉不需要的部分呗。
通过低频的滤波器称为低通滤波器。
通过高频的滤波器称为高通滤波器
修改傅里叶变换以达到特殊目的,然后计算IDFT返回到图像域。比如我们可以利用傅里叶变换进行,图像增强、图像去噪、边缘检测、特征提取、图像压缩、图像加密等。
衰减高频而通过低频,低通滤波器,将模糊一幅图像。
衰减低频而通过高频,高通滤波器,将增强尖锐的细节,但是会导致图像
的对比度降低
那么我们只需要再滤波中来一个掩膜操作,具体看下面:

对于这个掩膜我们这样做:

rows, cols = img.shape
crow,ccol = int(rows/2) , int(cols/2)
fshift[crow-30:crow+30, ccol-30:ccol+30] = 0

具体代码是:

import cv2
import numpy as np
import matplotlib.pyplot as plt
img = cv2.imread('image\\boat.bmp',0)
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)
rows, cols = img.shape
crow,ccol = int(rows/2) , int(cols/2)
fshift[crow-30:crow+30, ccol-30:ccol+30] = 0
ishift = np.fft.ifftshift(fshift)
iimg = np.fft.ifft2(ishift)
iimg = np.abs(iimg)
plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('original'),plt.axis('off')
plt.subplot(122),plt.imshow(iimg, cmap = 'gray')
plt.title('iimg'),plt.axis('off')
plt.show()

得到后的图象是这样的:

可以出来把边缘描绘的非常完整,但是图像的对比度降低了。

傅里叶OpenCV实现

对于OpenCV中的傅里叶变换函数是:返回结果=cv2.dft(原始图像,转换标识)
返回结果是双通道的,第一个是实数部分,第二个通道是虚数部分。
输入图像要首先转换成np.float32 格式, np.float32(img)
flags = cv2.DFT_COMPLEX_OUTPUT,输出一个复数阵列
移动频谱部分和numpy一致,是这样的,numpy.fft.fftshift,然后进行返回值=cv2.magnitude(参数1,参数2)这里参数1就是实数部分,参数2就是虚数部分,并且进行𝑑𝑠𝑡 𝐼 = 根号𝑥(𝐼)2 + 𝑦(𝐼)2操作。
 

import numpy as np
import cv2
import matplotlib.pyplot as plt
img = cv2.imread('image\\lena.bmp',0)
dft = cv2.dft(np.float32(img),flags = cv2.DFT_COMPLEX_OUTPUT)
dftShift = np.fft.fftshift(dft)
result = 20*np.log(cv2.magnitude(dftShift[:,:,0],dftShift[:,:,1]))
plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('original'),plt.axis('off')
plt.subplot(122),plt.imshow(result, cmap = 'gray')
plt.title('result'), plt.axis('off')
plt.show()

得到的图像和numpy一致。

傅里叶OpenCV逆变换实现

对于傅里叶变换的逆操作,使用OpenCV的函数就是返回结果=cv2.idft(原始数据),然后计算幅度函数仍然是返回值=cv2.magnitude(参数1,参数2)numpy.fft.ifftshift.

import numpy as np
import cv2
import matplotlib.pyplot as plt
img = cv2.imread('image\\lena.bmp',0)
dft = cv2.dft(np.float32(img),flags = cv2.DFT_COMPLEX_OUTPUT)
dftShift = np.fft.fftshift(dft)
ishift = np.fft.ifftshift(dftShift)
iImg = cv2.idft(ishift)
iImg= cv2.magnitude(iImg[:,:,0],iImg[:,:,1])
plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('original'), plt.axis('off')
plt.subplot(122),plt.imshow(iImg, cmap = 'gray')
plt.title('inverse'), plt.axis('off')
plt.show()

频域的低通滤波

我们这里的想法就是:

自己构建一个低通滤波器,把中间位置设置成255,其余部分为0.那么我们做一个与操作,就可以把高频过滤了。

rows, cols = img.shape
crow,ccol = int(rows/2) , int(cols/2)
mask = np.zeros((rows,cols,2),np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 1

低通滤波器构建代码。
然后我们完整代码就是:

import numpy as np
import cv2
import matplotlib.pyplot as plt
img = cv2.imread('image\\lena.bmp',0)
dft = cv2.dft(np.float32(img),flags = cv2.DFT_COMPLEX_OUTPUT)
dftShift = np.fft.fftshift(dft)
rows, cols = img.shape
crow,ccol = int(rows/2) , int(cols/2)
mask = np.zeros((rows,cols,2),np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 1
fShift = dftShift*mask
ishift = np.fft.ifftshift(fShift)
iImg = cv2.idft(ishift)
iImg= cv2.magnitude(iImg[:,:,0],iImg[:,:,1])
plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('original'), plt.axis('off')
plt.subplot(122),plt.imshow(iImg, cmap = 'gray')
plt.title('inverse'), plt.axis('off')
plt.show()

傅里叶变换有什么应用场景

傅里叶变换可以将一个时域信号转换成在不同频率下对应的振幅及相位,其频谱就是时域信号在频域下的表现,而反傅里叶变换可以将频谱再转换回时域的信号。最简单最直接的应用就是时频域转换,比如在移动通信的LTE系统中,要把接收的信号从时域变成频域,就需要使用FFT(快速傅里叶变换)。又例如对一个采集到的声音做傅立叶变化就能分出好几个频率的信号。比如南非世界杯时,南非人吹的呜呜主拉的声音太吵了,那么对现场的音频做傅立叶变化(当然是对声音的数据做),会得到一个展开式,然后找出呜呜主拉的特征频率,去掉展开式中的那个频率的sin函数,再还原数据,就得到了没有呜呜主拉的嗡嗡声的现场声音。而对图片的数据做傅立叶,然后增大高频信号的系数就可以提高图像的对比度。同样,相机自动对焦就是通过找图像的高频分量最大的时候,就是对好了。

傅里叶变换matlab实现

[i,lcmp]=imread('F:/123.jpg');%=======读取图像 显示图像
subplot(2,2,1),imshow(i,lcmp);
title('original');
ii=im2double(i); %=====将图像矩阵类型转换为double(图像计算很多是不能用整型的),没有这个会报错!! ,如果不用这个就必须转化为灰度图!
i1 = fft2(ii); %======傅里叶变换
i2 =fftshift(i1); %======将变换的频率图像四角移动到中心(原来良的部分在四角 现在移动中心,便于后面的处理)
i3=log(abs(i2)); %=====显示中心低频部分,加对数是为了更好的显示
subplot(2,2,2),imshow(i3,[]);
title('Fourier');
map=colormap(lcmp); %===取色谱
imwrite(i3,map,'f:/ffttank.bmp'); %===将上面i3输入到ffttank文件中
i5 = real(ifft2(ifftshift(i2))); %===频域的图反变换到空域 并取实部
i6 = im2uint8(mat2gray(i5)); %===取其灰度图
imwrite(i6,map,'f:/tank2.bmp','bmp'); %===利用灰度图和原来取得颜色模板 还原图像
subplot(2,2,3),imshow(i6);
title('anti-Fourier');
i7=rgb2gray(i);
i8=fft2(i7);%===对灰色图才能归一化。因为那是2维矩阵,彩色图是3维矩阵,需要转化为2维灰图
m=fftshift(i8); %直流分量移到频谱中心
%RR=real(m); %取傅立叶变换的实部
%II=imag(m); %取傅立叶变换的虚部
A=abs(m);%计算频谱幅值
%A=sqrt(RR.^2+II.^2);
A=(A-min(min(A)))/(max(max(A))-min(min(A)))*225; %归一化
subplot(2,2,4),imshow(A); %显示原图像
colorbar; %显示图像的颜色条
title('FFT spectrum'); %图像命名

如果觉得博主的文章还不错或者您用得到的话,可以免费的关注一下博主,如果三连收藏支持就更好啦!这就是给予我最大的支持!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/170618.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

验证码常见安全问题与测试方法汇总

系统使用验证码主要是意图一般有两个个目的,即辅助身份验证(短信或邮箱验证码)和防止攻击者利用自动化脚本恶意攻击网站(数字,图片,视频,行为式等验证码)。 验证码的生命周期 验证码…

《向量数据库指南》——Range Search 使用方法和参数检查

Range Search 使用方法 如需使用 Range Search,只需要修改搜索请求中的搜索参数。接下来我会讲一下的详细使用指南,在指南的最后还提供了 Python 示例代码。 开始前 请确保已安装并运行 Milvus Cloud。请确保已创建 1 个 Collection,并为该 Collection 创建索引。 Ra…

TensorFlow实战教程(二十六)-什么是生成对抗网络GAN?基础原理和代码普及

从本专栏开始,作者正式研究Python深度学习、神经网络及人工智能相关知识。前一篇文章分享了Keras实现经典的深度学习文本分类算法,包括LSTM、BiLSTM、BiLSTM+Attention和CNN、TextCNN。这篇文章将详细介绍生成对抗网络GAN的基础知识,包括什么是GAN、常用算法(CGAN、DCGAN、…

vue2.0中使用v-if/v-show切换后echarts不显示和宽高问题

vue2.0中使用v-if/v-show切换后echarts不显示和宽高问题 需求描述问题描述问题解析 解决方案使用v-show替代(不推荐)v-if使用$nextTick(推荐) 需求描述 使用ehcarts时,请求数据时加loading,请求结束后取消loading并显示…

XmlElement注解在Java的数组属性上,以产生多个相同的XML元素

例如&#xff0c;下面这段XML数据&#xff0c;有多个data元素&#xff0c;并且它们级别相同: <?xml version"1.0" encoding"UTF-8"?><request><reqtype>05</reqtype><secret>test</secret><body><userid&…

【数据结构】【版本2.0】【树形深渊】——二叉树入侵

目录 引言 一、树的概念与结构 1.1 树的概念 1.2 树的相关概念 1.3 树的表示 1.4 树在实际中的运用 二、二叉树的概念与结构 2.1 二叉树的概念 2.2 特殊二叉树 满二叉树 完全二叉树 2.3 现实中的二叉树 2.4 二叉树的性质 2.5 二叉树的存储结构 顺序存储 链式…

掌握源码,轻松搭建:一站式建站系统源码 附完整搭建步骤与教程

随着互联网的快速发展&#xff0c;网站已成为人们生活中不可或缺的一部分。然而&#xff0c;对于许多初学者或中小企业来说&#xff0c;搭建一个完整的网站系统并非易事。这涉及到前端和后端的开发、数据库管理等多个环节。为了解决这一痛点&#xff0c;我们推出了一站式建站系…

Redis变慢怎么办?

一、Redis为什么变慢了 1.Redis 真的变慢了吗&#xff1f; 对 Redis 进行基准性能测试 例如&#xff0c;我的机器配置比较低&#xff0c;当延迟为 2ms 时&#xff0c;我就认为 Redis 变慢了&#xff0c;但是如果你的硬件配置比较高&#xff0c;那么在你的运行环境下&#xf…

synchronized锁膨胀过程

轻量级锁&#xff1a; 使用场景&#xff1a;如果一个对象虽然有多线程要加锁&#xff0c;但加锁的时间是错开的&#xff08;也就是没有竞争&#xff09;&#xff0c;那么可以 使用轻量级锁来优化。 轻量级锁原理 1.创建锁记录&#xff08;Lock Record&#xff09;对象&#…

【前端学java】java中的字符串操作(10)

往期回顾&#xff1a; 【前端学java】JAVA开发的依赖安装与环境配置 &#xff08;0&#xff09;【前端学 java】java的基础语法&#xff08;1&#xff09;【前端学java】JAVA中的packge与import&#xff08;2&#xff09;【前端学java】面向对象编程基础-类的使用 &#xff08…

抖音电商双11官方数据最全汇总!

11月13日&#xff0c;抖音电商数据发布“抖音商城双11好物节”数据报告&#xff0c;展现双11期间平台全域经营情况及大众消费趋势。 报告显示&#xff0c;10月20日至11月11日&#xff0c;抖音电商里的直播间累计直播时长达到5827万小时&#xff0c;挂购物车的短视频播放了1697亿…

PEFT LoraConfig参数详解

参数高效微调 (PEFT) 可以使预训练模型高效适应下游应用&#xff0c;而无需微调所有模型参数。 PEFT 支持广泛使用的大型语言模型低秩适应 (LoRA)。 为了从预训练的 Transformer 模型创建 LoRA 模型&#xff0c;我们导入并设置 LoraConfig。 例如&#xff0c; from peft impo…

数据预处理pandas pd.json_normalize占用内存过大优化

问题描述 从ES下载数据&#xff0c;数据格式为json&#xff0c;然后由pandas进行解析&#xff0c;json中的嵌套字段会进行展开作为列名(由于维度初期无法预测&#xff0c;所以根据数据有啥列就使用啥列&#xff0c;这是最方便的点)&#xff0c;变成表格&#xff0c;方面了后续…

Proxmox download

Proxmox VE proxmox Virtual Environment是一个基于 QEMU/KVM 和 LXC 的开源服务器虚拟化管理解决方案。您可以使用集成的、易于使用的 Web 界面或通过 CLI 管理虚拟机、容器、高可用性集群、存储和网络。Proxmox VE 代码根据 GNU Affero 通用公共许可证第 3 版获得许可 Prox…

Vue typescript项目配置eslint+prettier

1.安装依赖 安装 eslint yarn add eslint --dev安装 eslint-plugin-vue yarn add eslint-plugin-vue --dev主要用于检查 Vue 文件语法 安装 prettier 及相关插件 yarn add prettier eslint-config-prettier eslint-plugin-prettier --dev安装 typescript 解析器、规则补充 …

Redis篇---第十一篇

系列文章目录 文章目录 系列文章目录前言一、说说Redis持久化机制二、缓存雪崩、缓存穿透、缓存预热、缓存更新、缓存降级等问题三、热点数据和冷数据是什么前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站,这篇文章…

gzip 压缩优化大 XML 响应的处理方法

当处理大型XML响应时&#xff0c;我们经常会面临内存限制和性能问题。 在处理这个问题时&#xff0c;我们可以使用Python的requests库和lxml库来解决。下面是解决方案的步骤&#xff1a; 1. 使用requests库发送HTTP请求获取XML响应。 2. 检查响应的Content-Encoding标头&…

这篇文章带你了解:如何一次性将Centos中Mysql的数据快速导出!!!

目录 一.数据库导出 1.首先创建文件以.sql结尾的文件 2.打开名mysq的解压目录&#xff0c;导出数据 3.然后在查看即可 4 需要的软件 MobaXterm 一.数据库导出 1.首先创建文件以.sql结尾的文件 通过 touch ssm.sql &#xff08;小编&#xff09; 实际上&#xff1a…

提升办公效率,畅享多功能办公笔记软件Notion for Mac

在现代办公环境中&#xff0c;高效的笔记软件对于提高工作效率至关重要。而Notion for Mac作为一款全能的办公笔记软件&#xff0c;将成为你事业成功的得力助手。 Notion for Mac以其多功能和灵活性而脱颖而出。无论你是需要记录会议笔记、管理项目任务、制定流程指南&#xf…

以makefile的方式在linux上编译代码(小白级别)

作者&#xff1a;爱塔居 作者简介&#xff1a;大四学生&#xff0c;分享自己的学习片段~ 目录 前言 一、创建主要文件 二、makefile 前言 多有不足&#xff0c;以供参考&#xff0c;欢迎大佬们指点。我是在虚拟机上执行的&#xff0c;应该都一样。我用的VirtualBox&#xff0c;…