基于鲸鱼算法的极限学习机(ELM)分类算法-附代码

基于鲸鱼算法的极限学习机(ELM)分类算法

文章目录

  • 基于鲸鱼算法的极限学习机(ELM)分类算法
    • 1.极限学习机原理概述
    • 2.ELM学习算法
    • 3.分类问题
    • 4.基于鲸鱼算法优化的ELM
    • 5.测试结果
    • 6.参考文献
    • 7.Matlab代码

摘要:本文利用鲸鱼算法对极限学习机进行优化,并用于分类问题

1.极限学习机原理概述

典型的单隐含层前馈神经网络结构如图1 所示,由输入层、隐含层和输出层组成,输 入层与隐含层、隐含层与输出层神经元间全连接。其中,输入层有 n 个神经元,对应 n 个输入变量, 隐含层有 l个神经元;输出层有 m 个神经元 ,对应 m 个输出变量 。 为不失一般性,设输 入层与隐含层间的连接权值 w 为:
w = [ w 11 w 12 . . . w 1 , n w 21 w 22 . . . w 2 n . . . w l 1 w l 2 . . . w l n ] (1) w =\left[\begin{matrix}w_{11}&w_{12}&...&w_{1,n}\\ w_{21}&w_{22}&...&w_{2n}\\ ...\\ w_{l1}&w_{l2}&...&w_{ln} \end{matrix}\right]\tag{1} w= w11w21...wl1w12w22wl2.........w1,nw2nwln (1)
其中, w n w_n wn表示输入层第 i i i个神经元与隐含层第 j j j个神经元间的连接权值。

设隐含层与输出层间的连接权值 , 为 β \beta β:
β = [ β 11 β 12 . . . β 1 m β 21 β 22 . . . β 2 m . . . β l 1 β l 2 . . . β l m ] (2) \beta =\left[\begin{matrix} \beta_{11}&\beta_{12}&...&\beta_{1m}\\ \beta_{21}&\beta_{22}&...&\beta_{2m}\\ ...\\ \beta_{l1}&\beta_{l2}&...&\beta_{lm} \end{matrix}\right] \tag{2} β= β11β21...βl1β12β22βl2.........β1mβ2mβlm (2)
其中,自 β j k \beta_{jk} βjk表示隐含层第 j 个神经元与输出层第 k个神经元间的连接权值。

设隐含层神经元的阈值值 b 为:
b = [ b 1 b 2 . . . b l ] (3) b =\left[\begin{matrix}b_1\\ b_2\\ ...\\ b_l \end{matrix}\right]\tag{3} b= b1b2...bl (3)
设具有 Q 个样本的训练集输入矩阵 X 和输出矩阵 Y 分别为
X = [ x 11 x 12 . . . x 1 Q x 21 x 22 . . . x 2 Q . . . x n 1 x n 2 . . . x n Q ] (4) X =\left[\begin{matrix}x_{11}&x_{12}&...&x_{1Q}\\ x_{21}&x_{22}&...&x_{2Q}\\ ...\\ x_{n1}&x_{n2}&...&x_{nQ} \end{matrix}\right]\tag{4} X= x11x21...xn1x12x22xn2.........x1Qx2QxnQ (4)

KaTeX parse error: Undefined control sequence: \matrix at position 11: Y =\left[\̲m̲a̲t̲r̲i̲x̲{y_{11},y_{12},…

设隐含层神经元的激活函数为 g(x),则由图1 可得, 网络的输出 T 为:
T = [ t 1 , . . , t Q ] m ∗ Q , t j = [ t 1 j , . . . , t m j ] T = [ ∑ i = 1 t β i 1 g ( w i x j + b i ) ∑ i = 1 t β i 2 g ( w i x j + b i ) . . . ∑ i = 1 t β i m g ( w i x j + b i ) ] m ∗ 1 , ( j = 1 , 2 , . . . , Q ) (6) T = [t_1,..,t_Q]_{m*Q},t_j = [t_{1j},...,t_{mj}]^T =\left[\begin{matrix}\sum_{i=1}^t\beta_{i1}g(w_ix_j + b_i)\\ \sum_{i=1}^t\beta_{i2}g(w_ix_j + b_i)\\ ...\\ \sum_{i=1}^t\beta_{im}g(w_ix_j + b_i) \end{matrix}\right]_{m*1},(j=1,2,...,Q)\tag{6} T=[t1,..,tQ]mQ,tj=[t1j,...,tmj]T= i=1tβi1g(wixj+bi)i=1tβi2g(wixj+bi)...i=1tβimg(wixj+bi) m1,(j=1,2,...,Q)(6)
式(6)可表示为:
H β = T ’ (7) H\beta = T’ \tag{7} Hβ=T(7)
其中, T’为矩阵 T 的转置; H 称为神经网络的隐含层输出矩阵 , 具体形式如下 :
H ( w 1 , . . . , w i , b 1 , . . . , b l , x 1 , . . . , x Q ) = [ g ( w 1 ∗ x 1 + b 1 ) g ( w 2 ∗ x 1 + b 2 ) . . . g ( w l ∗ x 1 + b l ) g ( w 1 ∗ x 2 + b 1 ) g ( w 2 ∗ x 2 + b 2 ) . . . g ( w l ∗ x 2 + b l ) . . . g ( w 1 ∗ x Q + b 1 ) g ( w 2 ∗ x Q + b 2 ) . . . g ( w l ∗ x Q + b l ) ] Q ∗ l H(w_1,...,w_i,b_1,...,b_l,x_1,...,x_Q) =\left[\begin{matrix} g(w_1*x_1 + b_1)&g(w_2*x_1 + b_2)&...&g(w_l*x_1 + b_l)\\ g(w_1*x_2 + b_1)&g(w_2*x_2 + b_2)&...&g(w_l*x_2 + b_l)\\ ...\\ g(w_1*x_Q + b_1)&g(w_2*x_Q + b_2)&...&g(w_l*x_Q + b_l) \end{matrix}\right]_{Q*l} H(w1,...,wi,b1,...,bl,x1,...,xQ)= g(w1x1+b1)g(w1x2+b1)...g(w1xQ+b1)g(w2x1+b2)g(w2x2+b2)g(w2xQ+b2).........g(wlx1+bl)g(wlx2+bl)g(wlxQ+bl) Ql

2.ELM学习算法

由前文分析可知,ELM在训练之前可以随机产生 w 和 b , 只需确定隐含层神经元个数及隐含层和神经元的激活函数(无限可微) , 即可计算出 β \beta β 。具体地, ELM 的学习算法主要有以下几个步骤:

(1)确定隐含层神经元个数,随机设定输入层与隐含层间的连接权值 w 和隐含层神经元的偏置 b ;

(2) 选择一个无限可微的函数作为隐含层神经元的激活函数,进而计算隐含层输出矩 阵 H ;

(3)计算输出层权值: β = H + T ′ \beta = H^+T' β=H+T

值得一提的是,相关研究结果表明,在 ELM 中不仅许多非线性激活函数都可以使用(如 S 型函数、正弦函数和复合函数等),还可以使用不可微函数,甚至可以使用不连续的函数作为激 活函数。

3.分类问题

本文对乳腺肿瘤数据进行分类。采用随机法产生训练集和测试集,其中训练集包含 500 个样本,测试集包含 69 个样本 。

4.基于鲸鱼算法优化的ELM

鲸鱼算法的具体原理参考博客:https://blog.csdn.net/u011835903/article/details/107559167

由前文可知,ELM的初始权值和阈值都是随机产生。每次产生的初始权值和阈值具有满目性。本文利用鲸鱼算法对初始权值和阈值进行优化。适应度函数设计为训练集的错误率与测试集的错误率的和,以期望使训练得到的网络在测试集和训练集上均有较好的结果:
f i t n e s s = a r g m i n ( T r a i n E r r o r R a t e + T e s t E r r o r R a t e ) 。 fitness = argmin(TrainErrorRate + TestErrorRate)。 fitness=argmin(TrainErrorRate+TestErrorRate)

5.测试结果

鲸鱼算法相关参数如下:

%训练数据相关尺寸
R = size(Pn_train,1);
S = size(Tn_train,1);
N = 20;%隐含层个数
%% 定义鲸鱼优化参数
pop=20; %种群数量
Max_iteration=50; %  设定最大迭代次数
dim = N*R + N*S;%维度,即权值与阈值的个数
lb = [-1.*ones(1,N*R),zeros(1,N*S)];%下边界
ub = [ones(1,N*R),ones(1,N*S)];%上边界

将经过鲸鱼优化后的SSA-ELM与基础ELM进行对比。

预测结果如下图

鲸鱼收敛曲线如下:

在这里插入图片描述

数据结果如下:

鲸鱼优化ELM结果展示:----------------
训练集正确率Accuracy = 93.6%(468/500)
测试集正确率Accuracy = 98.5507%(68/69)
病例总数:569 良性:357 恶性:212
训练集病例总数:500 良性:313 恶性:187
测试集病例总数:69 良性:44 恶性:25
良性乳腺肿瘤确诊:44 误诊:0 确诊率p1=100%
恶性乳腺肿瘤确诊:24 误诊:1 确诊率p2=96%
传统ELM结果展示:----------------
训练集正确率Accuracy = 90.2%(451/500)
测试集正确率Accuracy = 94.2029%(65/69)
病例总数:569 良性:357 恶性:212
训练集病例总数:500 良性:313 恶性:187
测试集病例总数:69 良性:44 恶性:25
良性乳腺肿瘤确诊:43 误诊:1 确诊率p1=97.7273%
恶性乳腺肿瘤确诊:22 误诊:3 确诊率p2=88%

从上述数据可以看出,鲸鱼-ELM训练得到的网络,无论是在测试集和训练集上的正确率均高于基础ELM训练得到的网络。鲸鱼-ELM具有较好的性能。

6.参考文献

书籍《MATLAB神经网络43个案例分析》

7.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/1699.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C++继承

文章目录继承的概念和定义继承的概念继承定义继承定义格式继承基类成员访问方式的变化基类和派生类对象赋值转换继承中的作用域派生类的默认成员函数继承与友元继承与静态成员复杂的菱形继承及菱形虚拟继承菱形虚拟继承菱形虚拟继承原理菱形虚拟继承中虚指针应用继承的总结和反…

【C语言】字符串函数和内存函数

前言🌸在我们编写C程序时,除了使用自定义函数,往往还会使用一些库函数,例如标准输入输出函数printf,scanf,字符串函数strlen,内存函数memset等等,使用这些系统自带的库函数可以轻松地…

MongoDB【部署 01】mongodb最新版本6.0.5安装部署配置使用及mongodb-shell1.8.0安装使用(云盘分享安装文件)

云盘分享文件: 链接:https://pan.baidu.com/s/11sbj1QgogYHPM4udwoB1rA 提取码:l2wz 1.mongodb简单介绍 MongoDB的 官网 内容还是挺丰富的。 是由 C语言编写的,是一个基于分布式文件存储的开源数据库系统。在高负载的情况下&…

【JavaEE初阶】第八节.网络原理网络层和数据链路层,应用层

文章目录 前言 一、网络层协议 1.1 IP协议 1.2 IP地址; 1.3 路由选择; 二、数据链路层 2.1 以太网协议; 三、应用层; 3.1 应用层协议DNS; 3.2 DNS是如何完成转换的; 3.3 如何解决DNS访问量太高的…

c语言的基础知识之结构体

目录前言结构体结构的自引用typedef函数结构体内存对齐修改默认对齐数位段什么是位段位段的内存分配位段的跨平台问题位段的意义以及应用枚举枚举常量的赋值枚举的优点总结前言 欢迎来到戴佳伟的小课堂,那今天我们讲啥呢? 问得好,我们今天要讲…

数据库面试题——锁

了解数据库的锁吗? 锁是数据库系统区别于文件系统的一个关键特性,锁机制用于管理对共享资源的并发访问。 InnoDB下两种标准行级锁: 共享锁(S Lock),允许事务读一行数据。 排他锁(X Lock&…

图解如何一步步连接远程服务器——基于VScode

基于VScode连接远程服务器 安装Remote-SSH等插件 想要在vscode上连接远程服务器需要下载Remote-SSH系列插件: 直接在插件中搜索remote,即可找到,选择图片中的3个插件,点击install安装。 配置Remote-SSH 在这个步骤有多种操作…

和ChatGPT对比,文心一言的表现已经是中国之光了

网络上各种测评满天飞,这里就不展开说了,针对“chatgpt”这项技术的难点,是十分巨大的。当你对文心一言以及其他国产AI软件存在不满的时候,你可以简单对着chatgpt或者文心一言搜索!ChatGPT技术难点通俗来讲难度&#x…

节流还在用JS吗?CSS也可以实现哦

函数节流是一个我们在项目开发中常用的优化手段,可以有效避免函数过于频繁的执行。一般函数节流用在scroll页面滚动,鼠标移动等。 为什么需要节流呢,因为触发一次事件就会执行一次事件,这样就形成了大量操作dom,会出现卡顿的情况…

LeetCode:35. 搜索插入位置

🍎道阻且长,行则将至。🍓 🌻算法,不如说它是一种思考方式🍀算法专栏: 👉🏻123 一、🌱35. 搜索插入位置 题目描述:给定一个排序数组和一个目标值&…

CentOS8服务篇10:FTP服务器配置与管理

一、安装与启动FTP服务器 1、安装VSFTP服务器所需要的安装包 #yum -y install vsftpd 2、查看配置文件参数 Vim /etc/vsftpd/vsftpd.conf (1)是否允许匿名登录 anonymous_enableYES 该行用于控制是否允许匿名用户登录。 (2&…

年报前瞻:文化产业高质量发展确定性,关注腾讯音乐三大关键能力

港股进入年报季,今年的披露期拥有比往年更多的看点。 一方面,经济复苏态势明显,线上线下消费均有回暖,市场已经对去年的整体表现有更多预期,正关注企业对后续发展的思考;另一方面,两会结束&…

2023美赛C题【分析思路+代码】

以下内容为我个人的想法与实现,不代表任何其他人。 文章目录问题一数据预处理时间序列模型创建预测区间单词的任何属性是否影响报告的百分比?如果是,如何影响?如果不是,为什么不是?问题二问题三难度评估模型…

【Vue3】利用vite创建vue3项目

🏆今日学习目标:利用vite创建vue3项目 😃创作者:颜颜yan_ ✨个人格言:生如芥子,心藏须弥 ⏰本期期数:第二期 🎉专栏系列:Vue3 文章目录前言vite简介利用vite创建vue3项目…

二叉搜索树

1.基础概念介绍 二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树: 1.若它的左子树不为空,则左子树上所有节点的值都小于根节点的值 2.若它的右子树不为空,则右子树上所有节点的值都大于根节点的值 3.它…

设置Typora图床(Github)

PicGo,Github,Typora Nodejs下载: Node.js PicGo下载: GitHub - Molunerfinn/PicGo: A simple & beautiful tool for pictures uploading built by vue-cli-electron-builder 选择downloads或release. 然后进行安装。 Gith…

经典PID控制算法原理以及优化思路

文章目录0、概念1、理解2、实现3、优化4、引用0、概念 PID算法是工业应用中最广泛算法之一,在闭环系统的控制中,可自动对控制系统进行准确且迅速的校正。PID控制,即Proportional – Integral(I) – Derivative(D) Control, 实际上是三种反馈…

Transformer到底为何这么牛

从注意力机制(attention)开始,近两年提及最多的就是Transformer了,那么Transformer到底是什么机制,凭啥这么牛?各个领域都能用?一文带你揭开Transformer的神秘面纱。 目录 1.深度学习&#xff0…

STM32外设-DMA

1. 简介 DMA(Direct Memory Access)—直接存储器存取,是单片机的一个外设,它的主要功能是用来搬数据,但是不需要占用 CPU,即在传输数据的时候, CPU 可以干其他的事情,好像是多线程一样。数据传输支持从外设…

初时STM32单片机

目录 一、单片机基本认知 二、STM系列单片机命名规则 三、标准库与HAL库区别 四、通用输入输出端口GPIO 五、推挽输出与开漏输出 六、复位和时钟控制(RCC) 七、时钟控制 八、中断和事件 九、定时器介绍 一、单片机基本认知 单片机和PC电脑相比…