ClickHouse的 MaterializeMySQL引擎

概述

MySQL 的用户群体很大为了能够增强数据的实时性很多解决方案会利用 binlog 将数据写入到 ClickHouse。为了能够监听 binlog 事件,我们需要用到类似 canal 这样的第三方中间件,这无疑增加了系统的复杂度。

ClickHouse 20.8.2.3版本新增加了 MaterializeMySQL 的 database 引擎,该 database 能映射到 MySQL 中的某个 database,并自动在 ClickHouse 中创建对应的 ReplacingMergeTree。ClickHouse服务做为MySQL副本,读取Binlog并执行DDL和DML请求,实现了基于MySQL Binlog机制的业务数据库实时同步功能。

1.1 特点

1)MaterializeMySQL 同时支持全量增量同步 database 创建之初会全量同步 MySQL 中的表和数据之后则会通过 binlog 进行增量同步。

(2)MaterializeMySQL database 为其所创建的每张 ReplacingMergeTree 自动增加了 _sign  _version 字段。

其中, _version 用作 ReplacingMergeTree  ver 版本参数每当监听到 insertupdate  delete 事件时 databse 内全局自增。而 _sign 则用于标记是否被删除,取值 1 或者 -1。

目前 MaterializeMySQL 支持如下几种 binlog 事件:

  • MYSQL_WRITE_ROWS_EVENT:  _sign = 1,_version ++
  • MYSQL_DELETE_ROWS_EVENT: _sign = -1,_version ++
  • MYSQL_UPDATE_ROWS_EVENT: 新数据 _sign = 1
  • MYSQL_QUERY_EVENT: 支持 CREATE TABLE 、DROP TABLE 、RENAME TABLE等。

1.2 使用细则

(1)DDL查询

MySQL DDL查询被转换成相应的ClickHouse DDL查询(ALTER, CREATE, DROP, RENAME)。如果ClickHouse不能解析某些DDL查询,该查询将被忽略。

(2)数据复制

MaterializeMySQL不支持直接插入、删除和更新查询,而是将DDL语句进行相应转换:

MySQL INSERT查询被转换为INSERT with _sign=1。

MySQL DELETE查询被转换为INSERT with _sign=-1。

MySQL UPDATE查询被转换成INSERT with _sign=1和INSERT with _sign=-1。

(3)SELECT查询

如果在SELECT查询中没有指定_version,则使用FINAL修饰符,返回_version的最大值对应的数据,即最新版本的数据。

如果在SELECT查询中没有指定_sign,则默认使用WHERE _sign=1,即返回未删除状态(_sign=1)的数据。

(4)索引转换

ClickHouse数据库表会自动将MySQL主键和索引子句转换为ORDER BY元组。

ClickHouse只有一个物理顺序,由ORDER BY子句决定。如果需要创建新的物理顺序,请使用物化视图。

案例实操

2.1 MySQL开启binlog和GTID模式

(1)确保 MySQL 开启了 binlog 功能,且格式为 ROW

打开/etc/my.cnf,在[mysqld]下添加:

server-id=1 

log-bin=mysql-bin

binlog_format=ROW

(2)开启GTID模式

如果如果clickhouse使用的是20.8 prestable之后发布的版本,那么MySQL还需要配置开启GTID模式, 这种方式在mysql主从模式下可以确保数据同步的一致性(主从切换时)

gtid-mode=on

enforce-gtid-consistency=1    # 设置为主从强一致性

log-slave-updates=1   # 记录日志

GTID 是 MySQL 复制增强版,从 MySQL 5.6 版本开始支持,目前已经是 MySQL 主流复制模式。它为每个 event 分配一个全局唯一ID和序号,我们可以不用关心 MySQL 集群主从拓扑结构,直接告知 MySQL 这个 GTID 即可。

3)重启MySQL

sudo systemctl restart mysqld

2.2 准备MySQL表和数据

(1)在 MySQL 中创建数据表并写入数据

CREATE DATABASE testck;

CREATE TABLE `testck`.`t_organization` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `code` int NOT NULL,
  `name` text DEFAULT NULL,
  `updatetime` datetime DEFAULT NULL,
  PRIMARY KEY (`id`),
  UNIQUE KEY (`code`)
) ENGINE=InnoDB;

INSERT INTO testck.t_organization (code, name,updatetime) VALUES(1000,'Realinsight',NOW());
INSERT INTO testck.t_organization (code, name,updatetime) 
VALUES(1001, 'Realindex',NOW());
INSERT INTO testck.t_organization (code, name,updatetime) VALUES(1002,'EDT',NOW());

(2)创建第二张表

CREATE TABLE `testck`.`t_user` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `code` int,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB;

INSERT INTO testck.t_user (code) VALUES(1);

2.3 开启ClickHouse物化引擎

set allow_experimental_database_materialize_mysql=1;

2.4 创建复制管道

(1)ClickHouse中创建  MaterializeMySQL 数据库

CREATE DATABASE test_binlog ENGINE = MaterializeMySQL('hadoop1:3306','testck','root','000000');

其中 4 个参数分别是 MySQL地址、databse、username 和 password。

 (2)查看ClickHouse的数据

use test_binlog;

show tables;

select * from t_organization;

select * from t_user;

2.5 修改数据

 (1)在 MySQL 中修改数据:

update t_organization set name = CONCAT(name,'-v1')  where id = 1

 (2)查看clickhouse日志可以看到binlog监听事件,查询clickhouse

select * from t_organization;

2.6 删除数据

(1)MySQL删除数据:

DELETE FROM t_organization where id = 2;

(2)ClicKHouse,日志有 DeleteRows 的 binlog 监听事件,查看数据:

select * from t_organization;

 (3)在刚才的查询中增加 _sign 和 _version 虚拟字段

select *,_sign,_version from t_organization order by _sign desc,_version desc;

在查询时,对于已经被删除的数据,_sign=-1,ClickHouse 会自动重写 SQL,将 _sign = -1 的数据过滤掉;

对于修改的数据,则自动重写 SQL,为其增加 FINAL 修饰符。

select * from t_organization

等同于

select * from t_organization final where _sign = 1

2.7 删除表

 (1)在mysql执行删除表

drop table t_user;

 (2)此时在clickhouse处会同步删除对应表,如果查询会报错

show tables;

select * from t_user;

DB::Exception: Table scene_mms.scene doesn't exist.. 

(3)mysql新建表,clickhouse可以查询到

CREATE TABLE `testck`.`t_user` (
  `id` int(11) NOT NULL AUTO_INCREMENT,
  `code` int,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB;

INSERT INTO testck.t_user (code) VALUES(1);

#ClickHouse查询
show tables;
select * from t_user;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/169727.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Python-----PyInstaller的简单使用

PyInstaller简介 PyInstaller是一个Python库,可以将Python应用程序转换为独立的可执行文件。PyInstaller支持跨平台,可以在Windows、Linux和MacOS上生成可执行文件。 PyInstaller会分析Python程序,并将程序打包成一个完整的可执行文件&…

汽车级全保护型六路半桥驱动器NCV7708FDWR2G 原理、参数及应用

NCV7708FDWR2G 是一款全保护型六路半桥驱动器,特别适用于汽车和工业运动控制应用。六个高压侧和低压侧驱动器可自由配置,也可单独控制。因此可实现高压侧、低压侧和 H 桥控制。H 桥控制提供正向、逆向、制动和高阻抗状态。驱动器通过标准 SPI 接口进行控…

【SpringCloud】Eureka基于Ribbon负载均衡的调用链路流程分析

文章目录 前言1.调用形式2.LoadBalancerInterceptor3.负载均衡流程分析3.1 调用流程图3.2 intercept()方法3.3 execute()方法3.4 getServer()方法3.4 子类的chooseServer()方法3.5 getLoadBalancerStats().…

pytho你-opencv划痕检测

pytho你-opencv划痕检测 这次实验,我们将对如下图片进行划痕检测,其实这个比较有难度,因为清晰度太差了。 我们做法如下: (1)读取图像为灰度图像,进行自适应直方图均衡化处理,增强…

【Web】Flask|Jinja2 SSTI

目录 ①[NISACTF 2022]is secret ②[HNCTF 2022 WEEK2]ez_SSTI ③[GDOUCTF 2023] ④[NCTF 2018]flask真香 ⑤[安洵杯 2020]Normal SSTI ⑥[HNCTF 2022 WEEK3]ssssti ⑦[MoeCTF 2021]地狱通讯 ①[NISACTF 2022]is secret dirsearch扫出/secret 明示get传一个secret ?…

AIGC ChatGPT4对Gbase数据库进行总结

ChatGPT4 用一个Prompt完成Gbase数据库的总结。 AIGC ChatGPT 职场案例 AI 绘画 与 短视频制作 PowerBI 商业智能 68集 数据库Mysql 8.0 54集 数据库Oracle 21C 142集 Office 2021实战应用 Python 数据分析实战, ETL Informatica 数据仓库案例实战 Excel 2021实操 …

【Java】volatile-内存可见性问题

1、什么是内存可见性问题? (1)实例 要明白什么是内存可见性,我们首先来看一段代码 public class demo1 {public static int isQuit 0;public static void main(String[] args) {Thread thread1 new Thread(()->{while (is…

基于单片机K型热电偶温度采集报警系统

**单片机设计介绍, 基于单片机K型热电偶温度采集报警系统 文章目录 一 概要简介系统特点系统组成工作原理应用领域 二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 # 基于单片机K型热电偶温度采集报警系统介绍 简介 该系统是基于单片…

PDF控件Spire.PDF for .NET【转换】演示:自定义宽度、高度将 PDF 转 SVG

我们在上一篇文章中演示了如何将 PDF 页面转换为 SVG 文件格式。本指南向您展示如何使用最新版本的 Spire.PDF 以及 C# 和 VB.NET 指定输出文件的宽度和高度。 Spire.Doc 是一款专门对 Word 文档进行操作的 类库。在于帮助开发人员无需安装 Microsoft Word情况下,轻…

【2023云栖】陈守元:阿里云开源大数据产品年度发布

本文根据 2023 云栖大会演讲实录整理而成,演讲信息如下: 演讲人:陈守元 | 阿里云计算平台事业部开源大数据产品总监 演讲主题:阿里云开源大数据产品年度发布 随着云计算的不断发展,未来数据处理和应用的趋势将围绕C…

镭速,克服UDP传输缺点的百倍提速传输软件工具

在网络传输中,我们经常会面临这样的困难:文件太大,传输速度太慢,浪费时间和流量;文件太小,传输速度太快,容易出现丢包和乱序,损害数据的完整性和正确性。这些困难的根本在于传输层协…

mongoDB安装教程

安装及操作命令 cd /opt wget https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-3.4.0.tgz tar -zxvf mongodb-linux-x86_64-3.4.0.tgz#修改文件夹名字为mongodb-3.4.0 mv mongodb-linux-x86_64-3.4.0 mongodb-3.4.0# 在/opt/mongodb-3.4.0/conf目录下创建mongo.co…

服务器数据恢复—OCFS2下raid5磁盘损坏导致阵列崩溃的数据恢复案例

服务器数据恢复环境: IBM某型号存储,6块sas硬盘组建一组raid5,划分一个lun分配给Linux服务器并格式化为OCFS2文件系统,共享给虚拟化使用,存放的数据包括24台liunx和windows虚拟机、压缩包文件和配置文件。 服务器故障…

Ubuntu——卸载、安装CUDA

【注】WSL的Ubuntu是不用安装CUDA的,因为它使用的是Windows的显卡驱动,所以如果WSL的CUDA出了问题,重新安装WSL即可! 1、卸载 安装完CUDA后,会提示如果要卸载CUDA可以使用下列方法。 首先终端进入cuda-uninstaller所…

【亚马逊云科技产品测评】活动征文|aws云服务器 + 微服务Spring Cloud Nacos 实战

文章目录 前言一、拥有一台Aws Linux服务器1.1、选择Ubuntu版本Linux系统1.2、创建新密钥对1.3、网络设置1.4、配置成功,启动实例1.5、回到实例区域1.6、进入具体的实例1.7、设置安全组 二、在Mac上连接Aws云服务,并安装配置JDK112.1、解决离奇的错误2.2…

初识分布式键值对存储etcd

欢迎大家到我的博客浏览。胤凯 (oyto.github.io)大家好,今天我带大家来学习一下 etcd。 一、什么是 etcd etcd 是一个开源的分布式键值存储系统,主要用于构建分布式系统中那点服务发现、配置管理、分布式锁等场景。它采用 Raft 一致性算法来确保所有节…

【Redis】渐进式遍历数据库管理

文章目录 渐进式遍历scan 数据库管理切换数据库清除数据库 获取当前数据库key的个数 渐进式遍历 Redis使⽤scan命令进⾏渐进式遍历键,进⽽解决直接使⽤keys获取键时能出现的阻塞问题。每次scan命令的时间复杂度是O(1),但是要完整地完成所有键的遍历&…

Linux本地WBO创作白板部署与远程访问

文章目录 前言1. 部署WBO白板2. 本地访问WBO白板3. Linux 安装cpolar4. 配置WBO公网访问地址5. 公网远程访问WBO白板6. 固定WBO白板公网地址 前言 WBO在线协作白板是一个自由和开源的在线协作白板,允许多个用户同时在一个虚拟的大型白板上画图。该白板对所有线上用…

python的socket模块以及通信相关学习笔记

Socket又称"套接字",应用程序通常通过"套接字"向网络发出请求或者应答网络请求,使主机间或者一台计算机上的进程间可以通讯(最初设计是为了是使同一台计算机中的不同进程进行信息传递通信),最后拓展到可以使网络上两台计…

redis-持久化

目录 一、RDB RDB触发保存的两种方式 优劣势总结 二、AOF AOF持久化流程: 1、开启AOP 2、异常恢复 3、AOF的同步频率设置 4、ReWrite压缩 5、优劣势总结 Redis 4.0 混合持久化 redis是内存数据库,所有的数据都会默认存在内存中,如…