数据集笔记:NGSIM (next generation simulation)

1 数据集介绍

数据介绍s Next Generation Simulation (NGSIM) Open Data (transportation.gov)

数据地址:Next Generation Simulation (NGSIM) Vehicle Trajectories and Supporting Data | Department of Transportation - Data Portal 

时间2005年到2006年间
地点
  • 在四个不同的地点收集了高质量的交通数据集
    • 两个高速公路段(I-80和US-101)
    • 两个干道段(兰克希姆大道和桃树街)

  • 为每个地点收集和生成的数据集包括
    • 车辆轨迹数据(主要数据)
      • 从视频中转录车辆轨迹数据。
      • 这些车辆轨迹数据每0.1秒就能精确地提供研究区域内每辆车的位置,从而得到详细的车道位置和相对于其他车辆的位置
      • 对于四个NGSIM数据收集地点,存在着25列和超过1180万行的轨迹数据​​​​​​​
    • 其他特定地点的主要和支持数据
      • 不同聚合水平(例如,30秒、5分钟或15分钟)的车辆流量和占有率(可能还包括速度值)(主要数据)
      • 研究区域的正射矫正照片(支持数据)
      • 使用正射矫正照片开发的研究区域的计算机辅助设计(CAD)图纸(支持数据)
      • 信号和/或匝道计时(支持数据)
      • 包括研究区域网络的几何形状和其他属性的地理信息系统(GIS)形状文件(支持数据)
      • 带有聚合车辆轨迹结果的数据分析文件,提供常见的宏观交通流参数(支持数据)
      • I-80 NGSIM地点还提供以下额外数据:
        • 数据收集时期的旧金山机场的天气数据(支持数据)
        • 路标照片(支持数据)
    • 原始视频文件
      • 原始的车辆运动数据
      • I-80 视频

        2005年4月13日位于加利福尼亚州埃默里维尔的I-80路段

        提供45分钟的视频数据,分为三个15分钟的时段:1)下午4:00到4:15;2)下午5:00到5:15;以及3)下午5:15到5:30

        数据集包括来自七个摄像头的每个时间段的原始和处理过的视频文件

        数据集包括来自七个摄像头的每个时间段的原始和处理过的视频文件

        US-101 Videos

        2005年6月15日位于加利福尼亚州洛杉矶的美国101号(好莱坞高速公路)的高速公路段收集的。

        包含了45分钟的转录数据,分为三个15分钟的时段,分别代表:1) 上午7:50至8:05,2) 上午8:05至8:20,以及3) 上午8:20至8:35。

        数据集包括每个摄像头的三个时间段的原始和处理过的视频文件。摄像头编号按从最南(1)到最北(8)的顺序排列

        Lankershim Boulevard Videos

        视频是在2005年6月16日位于加利福尼亚州洛杉矶兰克希姆大道上的一条干道段收集的。

        数据代表了30分钟的视频,分为两个时段(上午8:30至8:45和上午8:45至9:00)。

        数据集包括两个时间段的每个摄像头的原始和处理过的视频数据的文件。摄像头编号按从最南(1)到最北(5)的顺序排列。

        Peachtree Street Videos

        视频是在2006年11月8日位于佐治亚州亚特兰大的桃树街上的一条干道段收集的。

        数据代表了30分钟的视频,分为两个时段(下午12:45至1:00和下午4:00至4:15)。

        数据集包括两个时间段的每个摄像头的原始和处理过的视频数据的文件

        。摄像头编号按从最南(1)到最北(8)的顺序排列。

    • 处理过的视频文件
      • 带有车辆识别号码叠加的车辆视频

 1.1 轨迹数据集各列意义

列名描述
Vehicle_Id车辆识别号(根据进入该区域的时间升序),重复利用
Frame_Id该条数据在某一时刻的帧(按开始时间升序),同一Vehicle_ID的帧号不会重复
Total_Frame该车出现在此数据集的总帧数
Global_Time时间戳(ms)
Local_X车辆前部中心的横向(X)坐标,以英尺为单位,相对于截面在行驶方向上的最左侧边缘。
Local_Y车辆前部中心的纵向(Y)坐标,以英尺为单位,相对于截面在行驶方向上的进入边缘。
以上两个采集区域内的坐标,采集区域不同,坐标系不同,会有不同的零点
Global_X,Y全局坐标,只有一个零点,可用作数据筛选
v_length车辆长度(以英尺为单位)
v_Width车辆长度(以英尺为单位)
v_Class车辆类型:1-摩托车,2-汽车,3-卡车
v_Vel车辆瞬时速度,以英尺/秒为单位
v_Acc车辆的瞬时加速度,以英尺/秒为单位
Lane_ID车辆的当前车道位置。 第1车道是最左边的车道; 第5车道是最右边的车道。
O_Zone车辆的起点区域,即车辆进入跟踪系统的位置。 研究区域有11个起源,编号从101到111。有关更多详细信息,请参阅数据分析报告。
D_Zone车辆的目的地区域,即车辆离开跟踪系统的地方。 研究区域中有10个目的地,从201到211编号。起点102是单向出口; 因此,没有关联的目标号码202。请参阅数据分析报告以获取更多详细信息。
Int_ID车辆行驶的路口。 交叉点的编号为1到4,交叉点1位于最南端,交叉点4位于研究区域的最北端。 值为“ 0”表示该车辆不在交叉路口的附近,而是该车辆标识为Lankershim Boulevard的一段(下面的Section_ID)。 请参阅数据分析报告以获取更多详细信息。
Section_ID车辆行驶的路段。 Lankershim Blvd分为五个部分(路口1的南部;路口1和2、2和3、3和4之间;路口4的北部)。 值为“ 0”表示该车辆未识别出Lankershim Boulevard的一段,并且该车辆紧邻交叉路口(上述Int_ID)。 请参阅数据分析报告以获取更多详细信息
Direction车辆的行驶方向。 1-东行(EB),2-北行(NB),3-西行(WB),4-南行(SB)
Movement车辆的运动。 1-通过(THE),2-左转(LEFT),3-右转(RT)。
Preceding同道前车的车辆编号。数值为“0”表示没有前面的车辆-发生在研究段的末尾和出匝道
Following在同一车道上跟随本车辆的车辆的车辆ID。 值“ 0”表示没有跟随的车辆-在研究部分的开头和匝道发生,
Space_Headway间距提供了车辆的前中心到前一辆车辆的前中心之间的距离。(英尺)
Time_Headway时间进度(以秒为单位)提供了从车辆的前中心(以车辆的速度)行进到前一辆车辆的前中心的时间。
Location街道名称或高速公路名称

2 数据集的一些应用

  1. 利用下一代模拟轨迹数据估计加速度和变道动态
    • 提出了一种轨迹平滑算法以消除噪音,并将其应用于NGSIM数据。
    • 然后使用平滑后的NGSIM数据来估计密度函数、时间间隔和碰撞时间的分布,以及变道持续时间标准。
  2. 用于高速公路轨迹预测的LSTM网络:
    • 使用NGSIM数据来训练和验证一个长短期记忆(LSTM)神经网络
    • 该网络可以准确预测高速公路上车辆的未来纵向和横向轨迹。
    • 这些预测旨在通过允许更好地理解周围车辆的意图来提高高级驾驶辅助系统(ADAS)的适应性。
  3. 在高速公路交通状态估计中加入拉格朗日测量:
    • 提出技术将手机的移动探针测量集成到高速公路交通流模型中。
    • NGSIM数据被用作基准数据集来验证和比较这两种方法。
  4. 在连接环境中建模变道行为:
    • 博弈论方法:提出了一个基于博弈论方法的变道模型,考虑了连接车辆环境中的信息流。
    • NGSIM数据集用于校准所提出的变道模型。
  5. 使用时空上下文检测异常视频事件:
    • 提出了一种意识到上下文的视频事件检测方法,用于检测对象运动中的异常。
    • NGSIM视频被用来测试和验证该方法在检测交通视频中的异常以及识别这些异常为危险和非法交通事件的能力。
  6. 自动驾驶车辆的社会行为:
    • 提出了一个自动驾驶车辆控制器设计框架,其中包含了来自社会心理学的工具。
    • NGSIM数据集用于验证所提出的算法,该算法控制自动驾驶车辆的驾驶,同时通过结合社会心理学预测人类驾驶的车辆轨迹。
  7. 驾驶行为模型中相关参数的研究——跟车例子及其对交通微观模拟的影响:
    • 调查了忽略跟车模型三个参数相关性对衍生运动和异质交通模拟的交通特性的影响。
    • NGSIM数据被用来校准跟车模型参数,并显示参数之间相关性的统计显著性。

参考内容:NGSIM数据集解析(含代码)_番茄炒狼桃的博客-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/169546.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Linux】 线程

pthread_join: 获取线程返回值 #include <stdio.h> #include <stdlib.h> #include <pthread.h> #include <unistd.h> #include <string.h>/*** 测试 pthread_join* 阻塞等待一个子线程的退出&#xff0c;可以接收到某一个子线程调用pthread_ex…

【Linux】Linux下的基础IO

❤️前言 大家好&#xff01;今天这篇博客和大家聊一聊关于Linux下的基础IO。 正文 在阅读本篇博客之前&#xff0c;请大家先回顾一下C语言文件操作的一些方法&#xff0c;这里可以看看我之前记录的一些内容&#xff1a; 【C语言】C语言成长之路之文件操作_MO_lion的博客-CSD…

elementui表格自定义指令控制显示哪些列可以拖动

Vue.directive(tableBorder, function (el, {value}) {// value允许传字符串数字和数组el.classList.add(z_table_hasBorder)let hasStyle el.querySelector(style)if(hasStyle){hasStyle.remove()}let style document.createElement(style)let str .z_table_hasBorder .el…

Sentinel 热点规则 (ParamFlowRule)

Sentinel 是面向分布式、多语言异构化服务架构的流量治理组件&#xff0c;主要以流量为切入点&#xff0c;从流量路由、流量控制、流量整形、熔断降级、系统自适应过载保护、热点流量防护等多个维度来帮助开发者保障微服务的稳定性。 SpringbootDubboNacos 集成 Sentinel&…

Ui自动化概念 + Web自动化测试框架介绍!

1.UI自动化测试概念:我们先明确什么是UI UI&#xff0c;即(User Interface简称UI用户界面)是系统和用户之间进行交互和信息交换的媒介 UI自动化测试: Web自动化测试和移动自动化测试都属于UI自动化测试&#xff0c;UI自动化测试就是借助自动化工具对程序UI层进行自动化的测试 …

远程文件包含演示

远程文件包含 基本介绍 受害机器 10.9.47.181 攻击者机器1 10.9.47.41 攻击者机器2 10.9.47.217 实现过程 受害者机器开启phpstudy 并且开启允许远程连接 攻击者机器1上有一个文件&#xff0c;内容是phpinfo(); 攻击者机器1提供web服务使得受害者机器能够访问到攻击者…

Linux latin1字符集转成UTF-8

latin1字符集&#xff0c;我用命令iconv转换后依旧乱码&#xff0c;但是本地用Notepad转成utf-8再入库数据&#xff0c;却是正常的 查看文件编码 vi WeakcoverReason_20231120.csv:set fileencoding使用编码转换命令&#xff0c;将latin1改成UTF-8 iconv -f latin1 -t UTF-8 W…

Android Termux安装MySQL,内网穿透实现公网远程访问

文章目录 前言1.安装MariaDB2.安装cpolar内网穿透工具3. 创建安全隧道映射mysql4. 公网远程连接5. 固定远程连接地址 前言 Android作为移动设备&#xff0c;尽管最初并非设计为服务器&#xff0c;但是随着技术的进步我们可以将Android配置为生产力工具&#xff0c;变成一个随身…

管家婆订货易在线商城任意文件上传漏洞复现

0x01 产品简介 管家婆订货易&#xff0c;帮助传统企业构建专属的订货平台&#xff0c;PC微信APP小程序h5商城5网合一&#xff0c;无缝对接线下的管家婆ERP系统&#xff0c;让用户订货更高效。支持业务员代客下单&#xff0c;支持多级推客分销&#xff0c;以客带客&#xff0c;拓…

单链表相关面试题--5.将两个有序链表合并为一个新的有序链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的

/* 解题思路&#xff1a; 此题可以先创建一个空链表&#xff0c;然后依次从两个有序链表中选取最小的进行尾插操作进行合并。 */ typedef struct ListNode Node; struct ListNode* mergeTwoLists(struct ListNode* l1, struct ListNode* l2){if(l1 NULL)return l2;else if(l2 …

【监控系统】日志可视化监控体系ELK搭建

1.ELK架构是什么 ELK是ElasticsearchLogstashKibana的简称。 Elasticsearch是一个开源的分布式搜索和分析引擎&#xff0c;可以用于全文检索、结构化检索和分析&#xff0c;它构建在Lucene搜索引擎库之上&#xff0c;是当前使用较为广泛的开源搜索引擎之一。 Logstash是一个…

如何实现MATLAB与Simulink的数据交互

参考链接&#xff1a;如何实现MATLAB与Simulink的数据交互 MATLAB是一款强大的数学计算软件&#xff0c;Simulink则是一种基于模型的多域仿真平台&#xff0c;常用于工程和科学领域中的系统设计、控制设计和信号处理等方面。MATLAB和Simulink都是MathWorks公司的产品&#xff0…

软件工程第十一周

面向对象 面向对象编程&#xff08;Object-Oriented Programming, OOP&#xff09;不仅仅是一种程序设计方法&#xff0c;它更是一种深刻的软件工程开发思想。这种思想的核心在于通过抽象和封装来模拟现实世界中的对象和概念&#xff0c;以便更好地管理和解决复杂的软件工程问…

渗透测试流程是什么?7个步骤给你讲清楚!

在学习渗透测试之初&#xff0c;有必要先系统了解一下它的流程&#xff0c;静下心来阅读一下&#xff0c;树立一个全局观&#xff0c;一步一步去建设并完善自己的专业领域&#xff0c;最终实现从懵逼到牛逼的华丽转变。渗透测试是通过模拟恶意黑客的攻击方法&#xff0c;同时也…

数字引领,智慧赋能|袋鼠云与易知微共同亮相2023智慧港口大会

2023年10月19日&#xff0c;由中国港口协会、中国交通通信信息中心、天津港&#xff08;集团&#xff09;有限公司主办&#xff0c;中国港口协会智慧港口专业委员会、《港口科技》杂志社等单位承办的以“数字引领 智慧赋能”为主题的“2023智慧港口大会”在天津顺利召开。 袋鼠…

el-tree 与table表格联动

html部分 <div class"org-left"><el-input v-model"filterText" placeholder"" size"default" /><el-tree ref"treeRef" class"filter-tree" :data"treeData" :props"defaultProp…

用对了吗?正确打开文件传输助手的方式

在这个高速发展的信息时代&#xff0c;我们每天都会面临一个重要的问题&#xff1a;如何在手机和电脑之间快速、高效地传输文件&#xff1f; 有时候&#xff0c;我们需要把工作中的一份报告从电脑传到手机&#xff0c;以便在路上查看&#xff1b;有时候&#xff0c;我们又想把手…

【Flask使用】全知识md文档,4大部分60页第3篇:状态cookie和session保持

本文的主要内容&#xff1a;flask视图&路由、虚拟环境安装、路由各种定义、状态保持、cookie、session、模板基本使用、过滤器&自定义过滤器、模板代码复用&#xff1a;宏、继承/包含、模板中特有变量和函数、Flask-WTF 表单、CSRF、数据库操作、ORM、Flask-SQLAlchemy…

PC 477B西门子触摸屏维修6AV7853-0AE20-1AA0

西门子触摸屏维修故障有&#xff1a;上电黑屏, 花屏,暗屏,触摸失灵,按键损坏,电源板,高压板故障,液晶,主板坏等,内容错乱、进不了系统界面、无背光、背光暗、有背光无字符&#xff0c;上电无任何显示 &#xff0c;Power灯不亮但其他一切正常&#xff0c;双串口无法通讯 &#x…

密码加密解密之路

1.背景 做数据采集&#xff0c;客户需要把他们那边的数据库连接信息存到我们系统里&#xff0c;那我们系统就要尽可能的保证这部分数据安全&#xff0c;不被盗。 2.我的思路 1.需要加密的地方有两处&#xff0c;一个是新增的时候前端传给后端的时候&#xff0c;一个是存到数…