竞赛选题 行人重识别(person reid) - 机器视觉 深度学习 opencv python

文章目录

  • 0 前言
  • 1 技术背景
  • 2 技术介绍
  • 3 重识别技术实现
    • 3.1 数据集
    • 3.2 Person REID
      • 3.2.1 算法原理
      • 3.2.2 算法流程图
  • 4 实现效果
  • 5 部分代码
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习行人重识别(person reid)系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:5分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 技术背景

行人重识别技术,是智能视频监控系统的关键技术之一,其研宄是针对特定目标行人的视频检索识别问题。行人再识别是一种自动的目标判定识别技术,它综合地运用了计算机视觉技术、机器学习、视频处理、图像分析、模式识别等多种相关技术于监控系统中,其主要描述的是在多个无重叠视域的摄像头监控环境之下,通过相关算法判断在某个镜头下出现过的感兴趣的目标人物是否在其他摄像头下再次出现。

2 技术介绍

在视频监控系统中,行人再识别任务的整体框架如下图所示:
—个监控系统由多个视域不相交的监控摄像头组成,摄像机的位置可以随时更改,同时也可以随时增加或减少摄像机。不两监控摄像头所摄取的画面、视角等各不相同。在这样的监控系统中,对行人的动向监测是,至关重要的。

对行人的监控主要基于以下三个基本的模块:

在这里插入图片描述

  • 行人检测:
    行人检测的目标是在图片中定位到行人的具体位置。这一步骤仅涉及到对于静止的单张图片的处理,而没有动态的处理,没有时间序列上的相关分析。

  • 行人轨迹跟踪:
    行人轨迹跟踪的主要任务是在一段时间内提供目标任务的位置移动信息。与行人检测不同,轨迹跟踪与时间序列紧密相关。行人轨迹跟踪是在行人检测的基础上进行的。

  • 行人再识别:
    行人再识别任务的目标是在没有相重合视域的摄像头或摄像机网络内的不同背景下的许多行人中中识别某个特定行人。行人再识别的


在此基础上,用训练出的模型进行学习从而判断得出某个摄像头下的行人与另一摄像头下的目标人物为同一个人。在智能视频监控系统中的行人再识别任务具有非常广阔的应用前景。行人再识别的应用与行人检测、目标跟踪、行人行为分析、敏感事件检测等等都有着紧密的联系,这些分析处理技术对于公安部门的刑侦工作和城市安防建设工作有着重要的意义。

3 重识别技术实现

3.1 数据集

目前行人再识别的研究需要大量的行人数据集。行人再识别的数据集主要是通过在不同区域假设无重叠视域的多个摄像头来采集拍摄有行人图像的视频,然后对视频提取帧,对于视频帧图像采用人工标注或算法识别的方式进行人体检测及标注来完成的。行人再识别数据集中包含了跨背景、跨时间、不同拍摄角度下、各种不同姿势的行人图片,如下图所示。

在这里插入图片描述

3.2 Person REID

3.2.1 算法原理

给定N个不同的行人从不同的拍摄视角的无重叠视域摄像机捕获的图像集合,行人再识别的任务是学习一个模型,该模型可以尽可能减小行人姿势和背景、光照等因素带来的影响,从而更好地对行人进行整体上的描述,更准确地对不同行人图像之间的相似度进行衡量。

我这里使用注意力相关的特征的卷积神经网络。该基础卷积神经网络架构可以由任何卷积神经网络模型代替,例如,VGG-19,ResNet-101。

该算法的核心模块在于注意力学习模型。

3.2.2 算法流程图

在这里插入图片描述

4 实现效果

在多行人场景下,对特定行人进行寻找
在这里插入图片描述

5 部分代码



    import argparse
    import time
    from sys import platform
    
    from models import *
    from utils.datasets import *
    from utils.utils import *
    
    from reid.data import make_data_loader
    from reid.data.transforms import build_transforms
    from reid.modeling import build_model
    from reid.config import cfg as reidCfg

    def detect(cfg,
               data,
               weights,
               images='data/samples',  # input folder
               output='output',  # output folder
               fourcc='mp4v',  # video codec
               img_size=416,
               conf_thres=0.5,
               nms_thres=0.5,
               dist_thres=1.0,
               save_txt=False,
               save_images=True):
    
        # Initialize
        device = torch_utils.select_device(force_cpu=False)
        torch.backends.cudnn.benchmark = False  # set False for reproducible results
        if os.path.exists(output):
            shutil.rmtree(output)  # delete output folder
        os.makedirs(output)  # make new output folder
    
        ############# 行人重识别模型初始化 #############
        query_loader, num_query = make_data_loader(reidCfg)
        reidModel = build_model(reidCfg, num_classes=10126)
        reidModel.load_param(reidCfg.TEST.WEIGHT)
        reidModel.to(device).eval()
    
        query_feats = []
        query_pids  = []
    
        for i, batch in enumerate(query_loader):
            with torch.no_grad():
                img, pid, camid = batch
                img = img.to(device)
                feat = reidModel(img)         # 一共2张待查询图片,每张图片特征向量2048 torch.Size([2, 2048])
                query_feats.append(feat)
                query_pids.extend(np.asarray(pid))  # extend() 函数用于在列表末尾一次性追加另一个序列中的多个值(用新列表扩展原来的列表)。
    
        query_feats = torch.cat(query_feats, dim=0)  # torch.Size([2, 2048])
        print("The query feature is normalized")
        query_feats = torch.nn.functional.normalize(query_feats, dim=1, p=2) # 计算出查询图片的特征向量
    
        ############# 行人检测模型初始化 #############
        model = Darknet(cfg, img_size)
    
        # Load weights
        if weights.endswith('.pt'):  # pytorch format
            model.load_state_dict(torch.load(weights, map_location=device)['model'])
        else:  # darknet format
            _ = load_darknet_weights(model, weights)
    
        # Eval mode
        model.to(device).eval()
        # Half precision
        opt.half = opt.half and device.type != 'cpu'  # half precision only supported on CUDA
        if opt.half:
            model.half()
    
        # Set Dataloader
        vid_path, vid_writer = None, None
        if opt.webcam:
            save_images = False
            dataloader = LoadWebcam(img_size=img_size, half=opt.half)
        else:
            dataloader = LoadImages(images, img_size=img_size, half=opt.half)
    
        # Get classes and colors
        # parse_data_cfg(data)['names']:得到类别名称文件路径 names=data/coco.names
        classes = load_classes(parse_data_cfg(data)['names']) # 得到类别名列表: ['person', 'bicycle'...]
        colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(classes))] # 对于每种类别随机使用一种颜色画框
    
        # Run inference
        t0 = time.time()
        for i, (path, img, im0, vid_cap) in enumerate(dataloader):
            t = time.time()
            # if i < 500 or i % 5 == 0:
            #     continue
            save_path = str(Path(output) / Path(path).name) # 保存的路径
    
            # Get detections shape: (3, 416, 320)
            img = torch.from_numpy(img).unsqueeze(0).to(device) # torch.Size([1, 3, 416, 320])
            pred, _ = model(img) # 经过处理的网络预测,和原始的
            det = non_max_suppression(pred.float(), conf_thres, nms_thres)[0] # torch.Size([5, 7])
    
            if det is not None and len(det) > 0:
                # Rescale boxes from 416 to true image size 映射到原图
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
    
                # Print results to screen image 1/3 data\samples\000493.jpg: 288x416 5 persons, Done. (0.869s)
                print('%gx%g ' % img.shape[2:], end='')  # print image size '288x416'
                for c in det[:, -1].unique():   # 对图片的所有类进行遍历循环
                    n = (det[:, -1] == c).sum() # 得到了当前类别的个数,也可以用来统计数目
                    if classes[int(c)] == 'person':
                        print('%g %ss' % (n, classes[int(c)]), end=', ') # 打印个数和类别'5 persons'
    
                # Draw bounding boxes and labels of detections
                # (x1y1x2y2, obj_conf, class_conf, class_pred)
                count = 0
                gallery_img = []
                gallery_loc = []
                for *xyxy, conf, cls_conf, cls in det: # 对于最后的预测框进行遍历
                    # *xyxy: 对于原图来说的左上角右下角坐标: [tensor(349.), tensor(26.), tensor(468.), tensor(341.)]
                    if save_txt:  # Write to file
                        with open(save_path + '.txt', 'a') as file:
                            file.write(('%g ' * 6 + '\n') % (*xyxy, cls, conf))
    
                    # Add bbox to the image
                    label = '%s %.2f' % (classes[int(cls)], conf) # 'person 1.00'
                    if classes[int(cls)] == 'person':
                        #plot_one_bo x(xyxy, im0, label=label, color=colors[int(cls)])
                        xmin = int(xyxy[0])
                        ymin = int(xyxy[1])
                        xmax = int(xyxy[2])
                        ymax = int(xyxy[3])
                        w = xmax - xmin # 233
                        h = ymax - ymin # 602
                        # 如果检测到的行人太小了,感觉意义也不大
                        # 这里需要根据实际情况稍微设置下
                        if w*h > 500:
                            gallery_loc.append((xmin, ymin, xmax, ymax))
                            crop_img = im0[ymin:ymax, xmin:xmax] # HWC (602, 233, 3)
                            crop_img = Image.fromarray(cv2.cvtColor(crop_img, cv2.COLOR_BGR2RGB))  # PIL: (233, 602)
                            crop_img = build_transforms(reidCfg)(crop_img).unsqueeze(0)  # torch.Size([1, 3, 256, 128])
                            gallery_img.append(crop_img)
    
                if gallery_img:
                    gallery_img = torch.cat(gallery_img, dim=0)  # torch.Size([7, 3, 256, 128])
                    gallery_img = gallery_img.to(device)
                    gallery_feats = reidModel(gallery_img) # torch.Size([7, 2048])
                    print("The gallery feature is normalized")
                    gallery_feats = torch.nn.functional.normalize(gallery_feats, dim=1, p=2)  # 计算出查询图片的特征向量
    
                    # m: 2
                    # n: 7
                    m, n = query_feats.shape[0], gallery_feats.shape[0]
                    distmat = torch.pow(query_feats, 2).sum(dim=1, keepdim=True).expand(m, n) + \
                              torch.pow(gallery_feats, 2).sum(dim=1, keepdim=True).expand(n, m).t()
                    # out=(beta∗M)+(alpha∗mat1@mat2)
                    # qf^2 + gf^2 - 2 * qf@gf.t()
                    # distmat - 2 * qf@gf.t()
                    # distmat: qf^2 + gf^2
                    # qf: torch.Size([2, 2048])
                    # gf: torch.Size([7, 2048])
                    distmat.addmm_(1, -2, query_feats, gallery_feats.t())
                    # distmat = (qf - gf)^2
                    # distmat = np.array([[1.79536, 2.00926, 0.52790, 1.98851, 2.15138, 1.75929, 1.99410],
                    #                     [1.78843, 1.96036, 0.53674, 1.98929, 1.99490, 1.84878, 1.98575]])
                    distmat = distmat.cpu().numpy()  # : (3, 12)
                    distmat = distmat.sum(axis=0) / len(query_feats) # 平均一下query中同一行人的多个结果
                    index = distmat.argmin()
                    if distmat[index] < dist_thres:
                        print('距离:%s'%distmat[index])
                        plot_one_box(gallery_loc[index], im0, label='find!', color=colors[int(cls)])
                        # cv2.imshow('person search', im0)
                        # cv2.waitKey()
    
            print('Done. (%.3fs)' % (time.time() - t))
    
            if opt.webcam:  # Show live webcam
                cv2.imshow(weights, im0)
    
            if save_images:  # Save image with detections
                if dataloader.mode == 'images':
                    cv2.imwrite(save_path, im0)
                else:
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release()  # release previous video writer
    
                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        width = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        height = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (width, height))
                    vid_writer.write(im0)
    
        if save_images:
            print('Results saved to %s' % os.getcwd() + os.sep + output)
            if platform == 'darwin':  # macos
                os.system('open ' + output + ' ' + save_path)
    
        print('Done. (%.3fs)' % (time.time() - t0))


    if __name__ == '__main__':
        parser = argparse.ArgumentParser()
        parser.add_argument('--cfg', type=str, default='cfg/yolov3.cfg', help="模型配置文件路径")
        parser.add_argument('--data', type=str, default='data/coco.data', help="数据集配置文件所在路径")
        parser.add_argument('--weights', type=str, default='weights/yolov3.weights', help='模型权重文件路径')
        parser.add_argument('--images', type=str, default='data/samples', help='需要进行检测的图片文件夹')
        parser.add_argument('-q', '--query', default=r'query', help='查询图片的读取路径.')
        parser.add_argument('--img-size', type=int, default=416, help='输入分辨率大小')
        parser.add_argument('--conf-thres', type=float, default=0.1, help='物体置信度阈值')
        parser.add_argument('--nms-thres', type=float, default=0.4, help='NMS阈值')
        parser.add_argument('--dist_thres', type=float, default=1.0, help='行人图片距离阈值,小于这个距离,就认为是该行人')
        parser.add_argument('--fourcc', type=str, default='mp4v', help='fourcc output video codec (verify ffmpeg support)')
        parser.add_argument('--output', type=str, default='output', help='检测后的图片或视频保存的路径')
        parser.add_argument('--half', default=False, help='是否采用半精度FP16进行推理')
        parser.add_argument('--webcam', default=False, help='是否使用摄像头进行检测')
        opt = parser.parse_args()
        print(opt)
    
        with torch.no_grad():
            detect(opt.cfg,
                   opt.data,
                   opt.weights,
                   images=opt.images,
                   img_size=opt.img_size,
                   conf_thres=opt.conf_thres,
                   nms_thres=opt.nms_thres,
                   dist_thres=opt.dist_thres,
                   fourcc=opt.fourcc,
                   output=opt.output)

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/168363.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

KiCad源代码研究:KiCad是如何渲染和绘图的。

common.json文件中appearance.show_scrollbars common.json对应于代码的common_settings 1.EDA_DRAW_PANEL_GAL类 EDA_DRAW_PANEL_GAL类中定义了绘图的基本要素&#xff1a; /// Interface for drawing objects on a 2D-surfaceKIGFX::GAL* m_gal;/// Stores v…

如何在公网环境下使用笔记本的Potplayer访问本地群晖webdav中的影视资源

文章目录 如何在公网环境下使用笔记本的Potplayer访问本地群晖webdav中的影视资源**那么问题来了&#xff0c;potplayer只能局域网内访问资源&#xff0c;那我不在家中怎么看本地电影&#xff1f;** 本教程解决的问题是&#xff1a;按照本教程方法操作后&#xff0c;达到的效果…

目标检测 Faster RCNN全面解读复现

Faster RCNN 解读 经过R-CNN和Fast RCNN的积淀&#xff0c;Ross B. Girshick在2016年提出了新的Faster RCNN&#xff0c;在结构上&#xff0c;Faster RCNN已经将特征抽取(feature extraction)&#xff0c;proposal提取&#xff0c;bounding box regression(rect refine)&…

DGL创建异构图

利用DGL创建具有3种节点类型和3种边类型的异构图 graph_data {# (src_type, edge_type, dst_type)(drug, interacts, drug): (th.tensor([0, 1]), th.tensor([1, 2])),(drug, interacts,, disease): (th.tensor([1]), th.tensor([2])) }g dgl.heterograph(graph_data)上述代…

110.firefly-overlayroot

折腾rk3399的开发板的时候&#xff0c;突然发现overlayroot这个词汇。 我移植一下linux5.10的内核到firefly3399开发板&#xff0c;结果启动之后文件系统提示只读&#xff01;&#xff01;&#xff01; 这就让我很莫名。后来看到mount文件系统的情况&#xff0c;感觉也是不可…

集成多元算法,打造高效字面文本相似度计算与匹配搜索解决方案,助力文本匹配冷启动[BM25、词向量、SimHash、Tfidf、SequenceMatcher]

搜索推荐系统专栏简介:搜索推荐全流程讲解(召回粗排精排重排混排)、系统架构、常见问题、算法项目实战总结、技术细节以及项目实战(含码源) 专栏详细介绍:搜索推荐系统专栏简介:搜索推荐全流程讲解(召回粗排精排重排混排)、系统架构、常见问题、算法项目实战总结、技术…

图解算法数据结构-LeetBook-栈和队列03_验证栈的取出顺序

现在图书馆有一堆图书需要放入书架&#xff0c;并且图书馆的书架是一种特殊的数据结构&#xff0c;只能按照 一定 的顺序 放入 和 拿取 书籍。 给定一个表示图书放入顺序的整数序列 putIn&#xff0c;请判断序列 takeOut 是否为按照正确的顺序拿取书籍的操作序列。你可以假设放…

万宾科技智能井盖传感器,预防城市道路安全

随着城市交通的不断发展和城市化进程的加速推进&#xff0c;城市道路安全问题日益凸显。市政井盖作为城市道路的一部分&#xff0c;承担着重要的交通安全保障职责。然而传统的市政井盖管理方式存在许多不足。针对这些问题政府需要采取适当的措施&#xff0c;补足传统管理方式的…

bitmap实践-留存计算

目录 1. 介绍2. 留存问题3. 思路解析4. 逻辑4.1 b表建设4.2 留存计算4.3 近X天的访问天数 5.分析 1. 介绍 bitmap方法是数据压缩使用的常用算法&#xff0c;当字段有明确上下界的时候&#xff0c;使用位图模式来减少存储。在业务指标体系中特别适合通用型留存指标的计算。 2.…

RAID技术复习笔记

Raid&#xff08;Redundant Array of independent Disks&#xff09;独立磁盘冗余阵列&#xff1a;磁盘阵列 Raid 分为:软raid、硬raid、软硬混合三种。 软Raid&#xff1a;所有的功能均有操作系统和CPU来完成&#xff0c;没有独立的raid控制、处理芯片和IO处理处理芯片。 硬R…

如何从零开始制作一本企业宣传画册?

最近公司领导要求为公司制作一本企业宣传画册&#xff0c;用来展示我们的产品和服务&#xff0c;增加品牌影响力。可是&#xff0c;像我这种零基础的小白&#xff0c;完全不知道如何制作啊&#xff1f;对此我感到很焦虑&#xff0c;怕做不好影响公司形象&#xff0c;也怕耽误时…

LR学习笔记——初识lightroom

文章目录 介绍图库界面修改照片界面 介绍 Lightroom是Adobe公司开发的一款用于图片后期处理制作的软件&#xff0c;被称为Adobe Photoshop Lightroom。其增强的校正工具、强大的组织功能以及灵活的打印选项可以帮助加快图片后期处理速度&#xff0c;将更多的时间投入拍摄。 相…

Navicat DML 操作

在表格种插入 列信息 -- 修改数据 update 表名 set 列名 值1, 列名值2,[where 条件]; -- 注意&#xff1a;如果update语句没有加where 表里对应行的全部信息都会被改; -- 删除数据 delecte from 表名 [where 条件]; 未删除前&#xff1a; 执行删除后为&#xff1a; DQL - 条…

打印工具HandyPrint Pro Mac中文版软件特点

HandyPrint Pro Mac是一款打印工具&#xff0c;它支持AIrPrint协议&#xff0c;可以让用户在iPhone、iPad、iPod等设备上进行打印操作&#xff0c;只需要将这些设备连接到Mac电脑的WiFi网络中即可实现打印功能。 ​ HandyPrint Pro Mac软件特点 简单易用&#xff1a;用户只需…

不标年份的葡萄酒质量好吗?

我们在葡萄酒标上经常看到生产年份&#xff0c;也就是指全部葡萄采摘的年份。旧世界葡萄酒产国认为葡萄酒年份对他们的影响较大&#xff0c;而新世界葡萄酒&#xff0c;年份的意义就稍微小些。甚至有一部分葡萄酒酒标上没有年份。在酒标上没有标注年份的葡萄酒&#xff0c;被称…

Java(三)(static,代码块,单例设计模式,继承)

目录 static 有无static修饰的成员变量 有无static修饰的成员方法 static的注意事项 代码块 静态代码块 实例代码块 单例设计模式 饿汉式单例写法 懒汉式单例写法 继承 基本概念 注意事项 权限修饰符 单继承 object 方法重写 子类方法中访问其他成员(成员变量…

Druid介绍

Druid介绍 Druid首先是一个数据库连接池&#xff0c;并且是目前最好的数据库连接池&#xff0c;在功能、性能、扩展性方面&#xff0c;都超过其他数据库连接池&#xff0c;包括DBCP、C3P0、BoneCP、Proxool、JBoss DataSource。但它不仅仅是一个数据库连接池&#xff0c;它还包…

使用frp搭建内网穿透服务

使用frp搭建内网穿透服务 frp 是一个专注于内网穿透的高性能的反向代理应用&#xff0c;支持 TCP、UDP、HTTP、HTTPS 等多种协议&#xff0c;且支持 P2P 通信。可以将内网服务以安全、便捷的方式通过具有公网 IP 节点的中转暴露到公网。 1.下载frp 下载地址 2.服务端安装 …

工作电压范围,转换速率高,相位补偿等特性的双运算放大器芯片D4510的描述

D4510是一块双运算放大器&#xff0c;具有较宽的工作电压范围&#xff0c;转换速率高&#xff0c;相位补偿等特性。电路能在低电源电压下:工作,电源电压范围:双电源为1V-3.5V和单电源电压为2V~7V。 主要特点&#xff1a; ● 低电压工作 ● 转换速率高 ● 动态输…

深度学习领域中的耦合与解耦

在阅读论文的时候应该会看到两个操作&#xff0c;一个是耦合&#xff0c;一个是解耦&#xff0c;经常搭配着出现的就是两个词语&#xff0c;耦合头&#xff08;Coupled head&#xff09;以及Decoupled head&#xff08;解耦合头&#xff09;&#xff0c;那为什么要耦合&#xf…