数据结构:红黑树讲解(C++)

红黑树

    • 1.前言
    • 2.红黑树简述
      • 2.1概念
      • 2.2性质
    • 3.红黑树的插入
      • 3.1关于新插入节点的颜色
      • 3.2节点的定义
      • 3.3插入新节点
      • 3.4判断插入后是否需要调整
      • 3.5插入后维持红黑树结构(重点)
        • 3.5.1cur、p、u为红,g为黑
        • 3.5.2cur、p为红,g为黑,u为空/u存在为黑
    • 4.一些简单的测试接口
    • 5.完整代码

1.前言

  • 本文旨在理解红黑树基本概念以及变色旋转规则,以理解C++mapset的底层原理,不会讲红黑树的删除操作。
  • 对于基本的旋转操作(单旋和双旋),本文不会展开讲,详细讲解在这里:
    AVL树旋转讲解。



2.红黑树简述

2.1概念

红黑树,是一种二叉搜索树,但在每个结点上增加一个存储位表示结点的颜色,可以是RedBlack。 通过对任何一条从根到叶子的路径上各个结点着色方式的限制,红黑树确保最长路径不超过最短路径两倍,因而是接近平衡的。


2.2性质

  1. 每个节点不是红色就是黑色。
  2. 根部节点是黑色的。(为了减少旋转次数,后面讲旋转大家就明白了)
  3. 对于一个红节点,它的孩子只能是黑色。(即一条路径上不能出现连续的红色节点)
  4. 每条路径都必须包含相同数量的黑色节点。

通过上面规则的限制,红黑树最长路径一定不会超过最短路径两倍,也就维持了高度的相对平衡
结合3、4来看下面的两条路径:
最长:黑、红、黑、红、黑、红…………
最短:黑、黑、黑…………



3.红黑树的插入

3.1关于新插入节点的颜色

对于新插入节点,我们设置为红色,原因是红黑树每条路径都必须包含相同数量的黑色节点(性质4),新插入红节点不一定破坏红黑树的结构,新插入黑色节点一定不符合性质4而且很难调整。
在这里插入图片描述


3.2节点的定义

//用枚举来定义颜色
enum Color
{
	RED,
	BLACK
};

//这里直接实现key_value模型
template<class K, class V>
struct RBTreeNode
{
	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	RBTreeNode<K, V>* _parent;  //涉及到旋转,多加父亲指针来简化操作
	pair<K, V> _kv;  //存储键值对
	Color _col; //颜色
	RBTreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _kv(kv)
		,_col(RED)  //新节点颜色为红色
	{}
};

3.3插入新节点

这里比较简单,按二叉搜索树的规则插入即可:

bool Insert(const pair<K, V>& kv)
{
	if (_root == nullptr)
	{
		_root = new Node(kv);
		_root->_col = BLACK;
		return true;
	}
	Node* cur = _root;
	Node* parent = nullptr;
	while (cur)
	{
		if (kv.first > cur->_kv.first) //待插入节点在右子树
		{
			parent = cur;
			cur = cur->_right;
		}
		else if (kv.first < cur->_kv.first)  //待插入节点在左子树
		{
			parent = cur;
			cur = cur->_left;
		}
		else  //相同
		{
			return false;
		}
	}
	cur = new Node(kv);
	if (kv.first > parent->_kv.first) //新节点在父亲右子树
	{
		parent->_right = cur;
	}
	else  //新节点在父亲左子树
	{
		parent->_left = cur;
	}
	cur->_parent = parent;  //记得更新父亲指针
	
	/// 变色旋转维持红黑树结构(暂时省略)  //
	
	_root->_col = BLACK; //可能改变根部颜色,保持根部为黑色
	return true;
}

3.4判断插入后是否需要调整

其实红黑树插入后只需要看当前节点和父亲的颜色即可,其中新节点一定为红。

  1. 父亲为黑,符合规则,不需要调整。
  2. 父亲为红,此时出现红红的连续节点,需要进行调整。

3.5插入后维持红黑树结构(重点)

为了方便叙述,我们做如下定义:

  1. cur表示当前节点
  2. p表示cur父亲节点
  3. u表示叔叔节点
  4. g表示祖父(p和u的父亲)节点
3.5.1cur、p、u为红,g为黑

在这里插入图片描述
代码:

while (parent && parent->_col == RED)  //父亲为红就调整,调整到根部要结束
{
	Node* granderfather = parent->_parent;  //祖父
	//需要对叔叔进行操作,需要判断叔叔是祖父的左还是右
	if (parent == granderfather->_left)  //父亲是祖父的左子树
	{
		Node* uncle = granderfather->_right;
		if (uncle && uncle->_col == RED) //叔叔不为空并且叔叔为红,变色即可
		{
			uncle->_col = parent->_col = BLACK;
			granderfather->_col = RED; 
			//当前子树可能为部分,继续向上调整
			cur = granderfather;
			parent = cur->_parent;
		}
		else  //叔叔为空或为黑色
		{ 
			//先省略
		}
	}
	else  //父亲是祖父的右子树
	{
		Node* uncle = granderfather->_left;
		if (uncle && uncle->_col == RED)  //叔叔不空并且为红
		{
			parent->_col = uncle->_col = BLACK;
			granderfather->_col = RED;  
			//当前可能为部分子树,需要继续上调
			cur = granderfather;
			parent = cur->_parent;
		}
		else  //叔叔为空或为黑色
		{
			// 先省略
		}
	}
}

3.5.2cur、p为红,g为黑,u为空/u存在为黑

下面是一会要用到的旋转接口:

void RotateL(Node* parent)  //左单旋,rotate->旋转
{
	Node* SubR = parent->_right;
	Node* SubRL = SubR->_left;  //这个有可能为空
	Node* ppnode = parent->_parent;  //原来父亲的父亲

	parent->_right = SubRL;
	if (SubRL)  SubRL->_parent = parent;

	SubR->_left = parent;
	parent->_parent = SubR;

	if (ppnode == nullptr)  //旋转的是整颗树
	{
		_root = SubR;
		SubR->_parent = nullptr;
	}
	else  //旋转的是部分
	{
		if (ppnode->_left == parent) //是左子树
		{
			ppnode->_left = SubR;
		}
		else  //是右子树
		{
			ppnode->_right = SubR;
		}
		SubR->_parent = ppnode;
	}
}

void RotateR(Node* parent)  //右单旋细节处理和左单旋差不多
{
	Node* SubL = parent->_left;
	Node* SubLR = SubL->_right;  //这个有可能为空
	Node* ppnode = parent->_parent;

	parent->_left = SubLR;
	if (SubLR)  SubLR->_parent = parent;

	SubL->_right = parent;
	parent->_parent = SubL;

	if (ppnode == nullptr)  //旋转的是整颗树
	{
		_root = SubL;
		SubL->_parent = nullptr;
	}
	else  //旋转部分
	{
		if (ppnode->_left == parent)  //是左子树
		{
			ppnode->_left = SubL;
		}
		else  //右子树
		{
			ppnode->_right = SubL;
		}
		SubL->_parent = ppnode;
	}
}

涉及旋转情况比较复杂,分开讨论:

(1)p为g的左孩子,cur为p的左孩子
在这里插入图片描述


(2)p为g的左孩子,cur为p的右孩子

在这里插入图片描述


(3)p为g的右孩子,cur为p的右孩子

在这里插入图片描述


(4)p为g的右孩子,cur为p的左孩子

在这里插入图片描述

整合一下(1、2、3、4)得到下面的调整代码:

//到这里插入新节点的工作完成,下面进行结构调整:
while (parent && parent->_col == RED)  //父亲为红就调整,调整到根部要结束
{
	Node* granderfather = parent->_parent;  //祖父
	if (parent == granderfather->_left)  //父亲是祖父的左子树,p为g的左孩子
	{
		Node* uncle = granderfather->_right;
		if (uncle && uncle->_col == RED) //叔叔不为空并且叔叔为红,变色即可
		{
			uncle->_col = parent->_col = BLACK;
			granderfather->_col = RED; 
			//当前子树可能为部分,继续向上调整
			cur = granderfather;
			parent = cur->_parent;
		}
		else  //叔叔为空或为黑色
		{ 
			//     g
			//   p   u
			// c
			if (cur == parent->_left)  //当前为父亲的左子树,cur为p的左孩子
			{
				RotateR(granderfather);
				granderfather->_col = RED;
				parent->_col = BLACK;
			}
			else   //当前为父亲的右子树,cur为p的右孩子
			{
				//    g
				//  p   u
				//    c
				//左右双旋
				RotateL(parent);
				RotateR(granderfather);
				granderfather->_col = RED;
				cur->_col = BLACK;
			}
			break;  //这两种情况调整完可以结束
		}
	}
	else  //父亲是祖父的右子树,p为g的右孩子
	{
		Node* uncle = granderfather->_left;
		if (uncle && uncle->_col == RED)  //叔叔不空并且为红
		{
			parent->_col = uncle->_col = BLACK;
			granderfather->_col = RED;  
			//当前可能为部分子树,需要继续上调
			cur = granderfather;
			parent = cur->_parent;
		}
		else  //叔叔为空或为黑色
		{
			if (cur == parent->_right)  //当前为父亲的右,cur为p的右孩子
			{
				//    g
				//  u   p
				//        c
				//左旋
				RotateL(granderfather);
				parent->_col = BLACK;
				granderfather->_col = RED;
			}
			else  //当前为父亲的左,cur为p的左孩子
			{
				//   g
				// u   p
				//   c
				//右左双旋
				RotateR(parent);
				RotateL(granderfather);
				cur->_col = BLACK;
				granderfather->_col = RED;	
			}
			break;  //这两种情况调整完可以结束
		}
	}
}
_root->_col = BLACK; //保持根部为黑色



4.一些简单的测试接口

void InOrder()   //中序遍历,验证是否为二叉搜索树
{
	_InOrder(_root);
	cout << endl;
}

void _InOrder(Node* root)
{
	if (root == nullptr)
		return;

	_InOrder(root->_left);
	cout << root->_kv.first << " ";
	_InOrder(root->_right);
}

// 根节点->当前节点这条路径的黑色节点的数量
bool Check(Node* root, int blacknum, const int refVal)  
{
	if (root == nullptr)  //到根部看看当前路径黑色节点和标准值是否一致
	{
		//cout << balcknum << endl;
		if (blacknum != refVal)
		{
			cout << "存在黑色节点数量不相等的路径" << endl;
			return false;
		}

		return true;
	}

	/检查子比较复杂,可以反过来去检查红节点父是否为黑色
	if (root->_col == RED && root->_parent->_col == RED)  
	{
		cout << "有连续的红色节点" << endl;

		return false;
	}

	if (root->_col == BLACK)
	{
		++blacknum;  //为黑节点加一
	}

	return Check(root->_left, blacknum, refVal)
		&& Check(root->_right, blacknum, refVal);
}

bool IsBalance()
{
	if (_root == nullptr)
		return true;

	if (_root->_col == RED)
		return false;

	//参考值,即先算出一条路径的黑色节点数
	int refVal = 0;
	Node* cur = _root;
	while (cur)
	{
		if (cur->_col == BLACK)
		{
			++refVal;
		}

		cur = cur->_left;
	}

	int blacknum = 0;
	return Check(_root, blacknum, refVal);
}



5.完整代码

#pragma once
#include <iostream>
#include <utility>
using namespace std;

//用枚举来定义颜色
enum Color
{
	RED,
	BLACK
};

//这里直接实现key_value模型
template<class K, class V>
struct RBTreeNode
{
	RBTreeNode<K, V>* _left;
	RBTreeNode<K, V>* _right;
	RBTreeNode<K, V>* _parent;  //涉及到旋转,多加父亲指针来简化操作
	pair<K, V> _kv;  //存储键值对
	Color _col; //颜色
	RBTreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _kv(kv)
		,_col(RED)  //新节点颜色为红色
	{}
};

template<class K, class V>
class RBTree
{
public:
	typedef RBTreeNode<K, V> Node;

	bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			_root->_col = BLACK;
			return true;
		}
		Node* cur = _root;
		Node* parent = nullptr;
		while (cur)
		{
			if (kv.first > cur->_kv.first) //待插入节点在右子树
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (kv.first < cur->_kv.first)  //待插入节点在左子树
			{
				parent = cur;
				cur = cur->_left;
			}
			else  //相同
			{
				return false;
			}
		}
		cur = new Node(kv);
		if (kv.first > parent->_kv.first) //在右子树
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}
		cur->_parent = parent;

		while (parent && parent->_col == RED)  //父亲为红就调整,调整到根部要结束
		{
			Node* granderfather = parent->_parent;  //祖父
			if (parent == granderfather->_left)  //父亲是祖父的左子树
			{
				Node* uncle = granderfather->_right;
				if (uncle && uncle->_col == RED) //叔叔不为空并且叔叔为红,变色即可
				{
					uncle->_col = parent->_col = BLACK;
					granderfather->_col = RED; 
					//当前子树可能为部分,继续向上调整
					cur = granderfather;
					parent = cur->_parent;
				}
				else  //叔叔为空或为黑色
				{ 
					//     g
					//   p   u
					// c
					if (cur == parent->_left)  //当前为父亲的左子树
					{
						RotateR(granderfather);
						granderfather->_col = RED;
						parent->_col = BLACK;
					}
					else   //当前为父亲的右子树
					{
						//    g
						//  p   u
						//    c
						//左右双旋
						RotateL(parent);
						RotateR(granderfather);
						granderfather->_col = RED;
						cur->_col = BLACK;
					}
					break;
				}
			}
			else  //父亲是祖父的右子树
			{
				Node* uncle = granderfather->_left;
				if (uncle && uncle->_col == RED)  //叔叔不空并且为红
				{
					parent->_col = uncle->_col = BLACK;
					granderfather->_col = RED;  
					//当前可能为部分子树,需要继续上调
					cur = granderfather;
					parent = cur->_parent;
				}
				else  //叔叔为空或为黑色
				{
					if (cur == parent->_right)  //当前为父亲的右
					{
						//    g
						//  u   p
						//        c
						//左旋
						RotateL(granderfather);
						parent->_col = BLACK;
						granderfather->_col = RED;
					}
					else  //当前为父亲的左
					{

						//   g
						// u   p
						//   c
						//右左双旋
						RotateR(parent);
						RotateL(granderfather);
						cur->_col = BLACK;
						granderfather->_col = RED;	
					}
					break;
				}
			}
		}
		_root->_col = BLACK; //保持根部为黑色
		return true;
	}


/// //
/// /
/// 	测试代码
	 
	void InOrder()   //中序遍历,验证是否为二叉搜索树
	{
		_InOrder(_root);
		cout << endl;
	}

	void _InOrder(Node* root)
	{
		if (root == nullptr)
			return;

		_InOrder(root->_left);
		cout << root->_kv.first << " ";
		_InOrder(root->_right);
	}

	// 根节点->当前节点这条路径的黑色节点的数量
	bool Check(Node* root, int blacknum, const int refVal)  
	{
		if (root == nullptr)  //到根部看看当前路径黑色节点和标准值是否一致
		{
			//cout << balcknum << endl;
			if (blacknum != refVal)
			{
				cout << "存在黑色节点数量不相等的路径" << endl;
				return false;
			}

			return true;
		}

		/检查子比较复杂,可以反过来去检查红节点父是否为黑色
		if (root->_col == RED && root->_parent->_col == RED)  
		{
			cout << "有连续的红色节点" << endl;

			return false;
		}

		if (root->_col == BLACK)
		{
			++blacknum;  //为黑节点加一
		}

		return Check(root->_left, blacknum, refVal)
			&& Check(root->_right, blacknum, refVal);
	}

	bool IsBalance()
	{
		if (_root == nullptr)
			return true;

		if (_root->_col == RED)
			return false;

		//参考值,即先算出一条路径的黑色节点数
		int refVal = 0;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_col == BLACK)
			{
				++refVal;
			}

			cur = cur->_left;
		}

		int blacknum = 0;
		return Check(_root, blacknum, refVal);
	}


	int Height()
	{
		return _Height(_root);
	}

	int _Height(Node* root)  //求高度的
	{
		if (root == nullptr)
			return 0;

		int leftHeight = _Height(root->_left);
		int rightHeight = _Height(root->_right);

		return leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;
	}


	Node* Find(K key)
	{
		return _Find(key, _root);
	}

	Node* _Find(K key, Node* root)
	{
		if (root == nullptr)
			return nullptr;
		if (key > root->_kv.first) //在右子树
		{
			return _Find(key, root->_right);
		}
		else if (key < root->_kv.first) //在左子树
		{
			return _Find(key, root->_left);
		}
		else  //找到了
		{
			return root;
		}
	}

private:
	Node* _root = nullptr;

	void RotateL(Node* parent)  //左单旋,rotate->旋转
	{
		Node* SubR = parent->_right;
		Node* SubRL = SubR->_left;  //这个有可能为空
		Node* ppnode = parent->_parent;  //原来父亲的父亲

		parent->_right = SubRL;
		if (SubRL)  SubRL->_parent = parent;

		SubR->_left = parent;
		parent->_parent = SubR;

		if (ppnode == nullptr)  //旋转的是整颗树
		{
			_root = SubR;
			SubR->_parent = nullptr;
		}
		else  //旋转的是部分
		{
			if (ppnode->_left == parent) //是左子树
			{
				ppnode->_left = SubR;
			}
			else  //是右子树
			{
				ppnode->_right = SubR;
			}
			SubR->_parent = ppnode;
		}
	}

	void RotateR(Node* parent)  //右单旋细节处理和左单旋差不多
	{
		Node* SubL = parent->_left;
		Node* SubLR = SubL->_right;  //这个有可能为空
		Node* ppnode = parent->_parent;

		parent->_left = SubLR;
		if (SubLR)  SubLR->_parent = parent;

		SubL->_right = parent;
		parent->_parent = SubL;

		if (ppnode == nullptr)  //旋转的是整颗树
		{
			_root = SubL;
			SubL->_parent = nullptr;
		}
		else  //旋转部分
		{
			if (ppnode->_left == parent)  //是左子树
			{
				ppnode->_left = SubL;
			}
			else  //右子树
			{
				ppnode->_right = SubL;
			}
			SubL->_parent = ppnode;
		}
	}
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/165427.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

MISRA 2012学习笔记(5)-Rules 8.10

文章目录 Rules8.10 基本类型模型(The essential type model)8.10.1 原理8.10.2 基本类型(Essential type)Rule 10.1 操作数不得具有不适当的基本类型Rule 10.2 在加减法运算中&#xff0c;不得不当使用本质为字符类型的表达式Rule 10.3 表达式的值不得赋值给具有较窄基本类型或…

【数据结构(二)】单链表(3)

文章目录 1. 链表介绍2. 单链表应用实例2.1. 顺序添加方式2.1.1. 思路分析2.1.2. 代码实现 2.2. 按照编号顺序添加方式2.2.1. 思路分析2.2.2. 代码实现 3. 单链表节点的修改3.1. 思路分析3.2. 代码实现 4. 单链表节点的删除4.1. 思路分析4.2. 代码实现 5. 单链表常见面试题5.1.…

影刀sqlite的插入方法

影刀sqlite的插入方法 变量外面不用加‘’

YOLO免费数据集网站收集

目录 Roboflow Universe: Open Source Computer Vision Community Find Open Datasets and Machine Learning Projects | Kaggle ​编辑 【火焰和烟雾图像数据集】-计算机视觉数据集-极市开发者平台 (cvmart.net) 开放数据集- 飞桨AI Studio星河社区 - 人工智能学习与实训社…

【iOS】——知乎日报第五周总结

文章目录 一、评论区展开与收缩二、FMDB库实现本地持久化FMDB常用类&#xff1a;FMDB的简单使用&#xff1a; 三、点赞和收藏的持久化 一、评论区展开与收缩 有的评论没有被回复评论或者被回复评论过短&#xff0c;这时就不需要展开全文的按钮&#xff0c;所以首先计算被回复评…

【LeetCode刷题-树】-- 572.另一棵树的子树

572.另一棵树的子树 方法&#xff1a;深度优先搜索暴力匹配 深度优先搜索枚举root中的每一个节点&#xff0c;判断这个点的子树是否与subroot相等 /*** Definition for a binary tree node.* public class TreeNode {* int val;* TreeNode left;* TreeNode right…

电子学会2023年6月青少年软件编程(图形化)等级考试试卷(四级)真题,含答案解析

青少年软件编程(图形化)等级考试试卷(四级) 一、单选题(共10题,共30分) 1. 下列积木运行后的结果是?( )(说明:逗号后面无空格) A.

读书笔记--从一到无穷大的关键金句和阅读感悟

借着休假&#xff0c;重新研读了十多年前读过的乔治.伽莫夫所著图书《从一到无穷大--ONE TWO THREE...INFINITY》&#xff0c;该书作为20世纪最经典的科普类图书之一&#xff0c;当时读的懵懵懂懂&#xff0c;现在重新阅读又有了不同的感受&#xff0c;再结合过去的科研工作&am…

计算机毕业设计选题推荐-内蒙古旅游微信小程序/安卓APP-项目实战

✨作者主页&#xff1a;IT研究室✨ 个人简介&#xff1a;曾从事计算机专业培训教学&#xff0c;擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Python…

CBAM注意力机制(结构图加逐行代码注释讲解)

学CBAM前建议先学会SEnet&#xff08;因为本篇涉及SEnet的重合部分会略加带过&#xff09;->传送门 ⒈结构图 下面这个是自绘的&#xff0c;有些许草率。。。 因为CBAM机制是由通道和空间两部分组成的&#xff0c;所以有这两个模块&#xff08;左边是通道注意力机制&#…

【MATLAB】全网唯一的11种信号分解+模糊熵(近似熵)联合算法全家桶

有意向获取代码&#xff0c;请转文末观看代码获取方式~ 大家吃一顿火锅的价格便可以拥有18种信号分解算法&#xff0c;绝对不亏&#xff0c;知识付费是现今时代的趋势&#xff0c;而且都是我精心制作的教程&#xff0c;有问题可随时反馈~也可单独获取某一算法的代码&#xff0…

【LeetCode刷题-树】--654.最大二叉树

654.最大二叉树 给定一个不重复的整数数组 nums 。 最大二叉树 可以用下面的算法从 nums 递归地构建: 1.创建一个根节点&#xff0c;其值为 nums 中的最大值。 2.递归地在最大值 左边 的 子数组前缀上 构建左子树。 3.递归地在最大值 右边 的 子数组后缀上 构建右子树。 返回…

【LeetCode刷题-树】--998.最大二叉树II

998.最大二叉树II /*** Definition for a binary tree node.* public class TreeNode {* int val;* TreeNode left;* TreeNode right;* TreeNode() {}* TreeNode(int val) { this.val val; }* TreeNode(int val, TreeNode left, TreeNode right) {* …

8.1 Windows驱动开发:内核文件读写系列函数

在应用层下的文件操作只需要调用微软应用层下的API函数及C库标准函数即可&#xff0c;而如果在内核中读写文件则应用层的API显然是无法被使用的&#xff0c;内核层需要使用内核专有API&#xff0c;某些应用层下的API只需要增加Zw开头即可在内核中使用&#xff0c;例如本章要讲解…

SQL单表复杂查询where、group by、order by、limit

1.1SQL查询代码如下&#xff1a; select job as 工作类别,count(job) as 人数 from tb_emp where entrydate <2015-01-01 group by job having count(job) > 2 order by count(job) limit 1,1where entrydate <‘2015-01-01’ 表示查询日期小于2015-01-01的记录…

Python大数据之linux学习总结——day11_ZooKeeper

ZooKeeper ZK概述 ZooKeeper概念: Zookeeper是一个分布式协调服务的开源框架。本质上是一个分布式的小文件存储系统 ZooKeeper作用: 主要用来解决分布式集群中应用系统的一致性问题。 ZooKeeper结构: 采用树形层次结构&#xff0c;ZooKeeper树中的每个节点被称为—Znode。且树…

随机过程-张灏

文章目录 导论随机过程相关 学习视频来源&#xff1a;https://www.bilibili.com/video/BV18p4y1u7NP?p1&vd_source5e8340c2f2373cdec3870278aedd8ca4 将持续更新—— 第一次更新&#xff1a;2023-11-19 导论 教材&#xff1a;《随机过程及其应用》陆大絟.张颢 参考&…

X3DAudio1_7.dll丢失原因,X3DAudio1_7.dll丢失怎样解决分享

X3DAudio1_7.dll是一款由微软公司开发的音频处理库&#xff0c;主要用于实现三维音频效果。这个库主要应用于游戏开发、多媒体应用等领域&#xff0c;它可以使得音频更加真实、自然地表现出空间感。如果在使用过程中遇到X3DAudio1_7.dll丢失的问题&#xff0c;可以尝试以下五个…

指南:关于帮助中心需要注意的一些细节

在现代商业环境中&#xff0c;帮助中心已经成为企业提供客户支持和解决问题的重要方式之一。然而&#xff0c;建立一个高效的帮助中心并不简单。除了选择合适的软件平台和工具之外&#xff0c;还需要注意一些细节&#xff0c;以确保能够真正帮助客户并提高客户满意度。 | 1.设计…

辅助解决小白遇到的电脑各种问题

写这个纯属是为了让电脑小白知道一些电脑上的简单操作&#xff0c;勿喷&#xff01;&#xff01;&#xff01; 一&#xff1a;当小白遇到电脑程序不完全退出怎么办&#xff1f; 使用软件默认的退出方式 此处拿百度网盘举例&#xff1a; 用户登录网盘后&#xff1a; 如果直接点…