数学建模-图与网络模型解题方法和代码实现

本文针对以下几个方面问题进行整理:

  1. 最短路问题
  • 两个指定顶点之间的最短路径
  • 任意顶点之间的最短路径

2.最小生成树问题

  • 求最小生成树

3.网络最大流问题

  • 源点与汇点之间的最大流
  • 基于最大流的最小费用求解

4.旅行商问题

  • 基于哈密顿(Hamilton)圈求解旅行商线性规划

最短路问题

两个指定点最小距离:

%使用graphshortestpath函数
[dist, path, pred]=graphshortestpath(G,S,T)

 G是稀疏矩阵,S是起点,T是终点。dist表示最短距离,path表示最短距离经过的路径节点,pred表示从S到每个节点的最短路径中,目标节点的先驱,即目标节点的前面一个节点。比如一共有6个点,S=1,那么运行这个函数后pred存的就是S=1这个节点到其它节点T'最短路径上T'的前一个节点。这个函数也就是求出图G上S到T的[distpathpred],当不写T时表示求S到其它所有点的[distpathpred]。

任意顶点的最短路径:

!使用graphallshortestpath函数
[dist] = graphallshortestpaths(G)
  • 解题思路:

简单构造稀疏矩阵:

  1. 手动录入权重矩阵
!w(起点,终点)=权重值
w=zeros(4)
w(1,2)=2;w(1,3)=3;w(1,4)=8; 
w(2,3)=6;w(2,4)=6;
G=sparse(w); 
%如果是无向图,G=sparse(tril(w'+w)取下三角)

得:

G =

(1,2) 2

(1,3) 3

(2,3) 6

(1,4) 8

(2,4) 6

2. 直接sparse函数生成

%sparse([起点集合],[对应终点集合],[对应权重集合])
G=sparse([1,1,2,1,2],[2,3,3,4,4],[2,3,6,8,6]);
%得到结果和上面相同
%如果是无向图,建议用方法1
对无向图而言:tril(w+w')是在不知道w是上三角还是下三角的情况下,确保取w对应的下三角;若w已知为上三角,稀疏矩阵G=sparse(w');若已知w为下三角,稀疏矩阵G=sparse(w);

例题:某公司在六个城市c1,c2,..c6中有分公司,从ci(1..6)到cj(1..6)的距离c(i,j)记在下述矩阵中,求ci到其他城市的最短距离。

050402510
500152025
1501020
40201001025
252010055
102525550
clear;
clc;
w=zeros(6);
w(1,2)=50;w(1,4)=40;w(1,5)=25;w(1,6)=10;
w(2,3)=15;w(2,4)=20;w(2,6)=25;
w(3,4)=10;w(3,5)=20;
w(4,5)=10;w(4,6)=25;
w(5,6)=55;
%无向图
G=sparse(w');
a=graphallshortestpaths(G,'Direct',0)
%记住要加Direct  0/false 说明是无向图 1/true则为有向图
得:
a =

0 35 45 35 25 10
35 0 15 20 30 25
45 15 0 10 20 35
35 20 10 0 10 25
25 30 20 10 0 35
10 25 35 25 35 0

例如第一行表示c1到ci(1..6)最短距离分别为[0,35,45,35,25,10].

最小生成树问题

同样直接运用graphminspantree函数并加一些图形显示参数即可

例:北京(Pe)、东京(T)、纽约(N)、墨西哥城(M)、伦敦(L)、巴黎(Pa)各城市之间航线距离如下表

LMNPaPeT
L5635215160
M5621577870
N3521366868
Pa2157365161
Pe5178685113
T6070686113

求由上述交通网络数据确定的最小生成树:

clc, clear
a=zeros(6); %邻接矩阵初始化
a(1,[2:6])=[56 35 21 51 60]; %输入邻接矩阵的上三角元素
a(2,[3:6])=[21 57 78 70];
a(3,[4:6])=[36 68 68];
a(4,[5 6])=[51 61]; a(5,6)=13;
a=a'; a=sparse(a); %变换成下三角矩阵,并转化成工具箱所需要的稀疏矩阵
[ST,pred] = graphminspantree(a,'method','Kruskal') %调用工具箱求最小生成树并定义用kruskal算法求解
nodestr={'L','M','N','Pa','Pe','T'}; %输入顶点名称的字符细胞数组
h=view(biograph(ST,nodestr,'ShowArrows','on','ShowWeights','on'))%将节点名称显示在图形上,并显示箭头以及对应的权重
h.EdgeType='segmented'; %边的连接为线段
h.LayoutType='equilibrium'; dolayout(h) %设置图形布局属性,并刷新图形布局
graphminspantree不需要指定Direct是0/1,但对于无向图仍然需要将输入得稀疏矩阵转为下三角矩阵。

网络最大流问题

同样,我们只需调用graphmaxflow函数即可

求最大流:

clc,clear
a=zeros(6);
%标号s=1 v1=2 v3=3 v2=4 v4=5 t=6
a(1,2)=8;a(1,3)=7;
a(2,3)=5;a(2,4)=9;
a(3,5)=9;
%有向图 不是上三角或下三角矩阵
a(4,3)=2;a(4,6)=5;
a(5,4)=6;a(5,6)=10;
%有向图 直接取稀疏矩阵
a=sparse(a);
%1,6表示求源点s和汇点t之间的最大流
[b,c]=graphmaxflow(a,1,6)
%b返回最大流 c返回每条管道对应的流量
得:
b =
14
c =
(1,2) 8.0000
(1,3) 6.0000
(2,3) 1.0000
(4,3) 2.0000
(2,4) 7.0000
(3,5) 9.0000
(4,6) 5.0000
(5,6) 9.0000

最大流最小费用问题再加上一定的约束即可,这里不再细说.

旅行商问题

旅行商问题是经典得哈密顿圈图论问题,具体可以自行百度其原理。这里给出lingo求解源码,只需带入初始矩阵即可。

约束条件:

+

1=2 转换为不等式使程序求解速度更快

model:
sets:
  city / 1..10/: u;
  link(city, city):
       dist,x;
endsets   
   n = @size(city);
data:   
 dist =  0  8  5  9  12 14 12 16 17 22
         8  0  9 15  17 8  11 18 14 22
         5  9  0  7  9  11 7  12 12 17
         9  15 7  0  3  17 10 7  15 18
         12 17 9  3  0  8  10 6  15 18
         14  8 11 17 8  0  9  14 8  16
         12 11 7 10 10  9  0  8  6  11
         16 18 12 7  6  14 8  0  11 11
         17 14 12 15 15 8  6  11 0  10
         22 22 17 18 15 16 11 11 10  0
        ;
enddata
  min = @sum(link:dist*x);
   @FOR(city(K):
    @sum(city(I)|I#ne#K:x(I,K)=1;

    @sum(city(J)|J#ne# K: x( K, J))=1;
  );
  @for(city(I)|I#gt#1:
    @for(city(J)|J#gt#1#and#I#ne#J:
      u(I)-u(J)+n*x(I,J)<=n-1);
  );
    @for(city(I)|I#gt#1:u(I)<=n-2);
   @for(link:@bin(x));
end
!只需替换data中 dist的距离矩阵以及初始化条件city的维数即可

总结

对于求解最小路径、最大流、最小生成树等问题使用matalab工具箱函数即可。统一的,对于有向图直接取稀疏矩阵,对于无向图需要取其下三角矩阵再求稀疏矩阵。

写了一天,累die....打球去了,希望可以帮助更多的人更好的理解和运用这些算法。如有不当,请指正。

参考书目:

数学建模算法与应用

数学模型算法与应用模型与解答

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/165360.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

九、Linux用户管理

1.基本介绍 Linux系统是一个多用户多任务的操作系统&#xff0c;任何一个要使用系统资源的用户&#xff0c;都必须首先向系统管理员申请一个账号&#xff0c;让后以这个账号的身份进入系统 2.添加用户 基本语法 useradd 用户名 应用案例 案例1&#xff1a;添加一个用户 m…

[游戏开发][Untiy]跨平台可视化Log系统

工具介绍 今天介绍的主角是LogViewer 工具运行时长这个样子&#xff0c;Unity的Log日志都会在这里显示 如何安装 在Unity商店搜索Log&#xff0c;排名第一的就是它 也可以去Github官网下载源码&#xff1a; Unity-Logs-Viewerhttps://github.com/aliessmael/Unity-Logs-Vie…

六.Linux远程登录

1.说明&#xff1a;公司开发的时候&#xff0c;具体的应用场景是这样的 1.linux服务器是开发小组共享 2.正式上线的项目是运行在公网 3.因此程序员需要远程登录到Linux进行项目管理或者开发 4.画出简单的网络拓扑示意图(帮助理解) 5.远程登录客户端有Xshell6、Xftp6&#xff0…

星火模型(Spark)的langchain 实现

星火模型的langchain实现 测试已通过&#xff0c;希望有所帮助。 使用前请先安装环境&#xff1a; pip install githttps://github.com/shell-nlp/spark-ai-python.git注意&#xff1a; 一定要使用上面方式安装spark库&#xff0c;因对官方的库做了改动。官方的库已经长时间不…

基于RK3588全高端智能终端机器人主板

一、小尺寸板型设计 该款主板为小型板&#xff0c;尺寸仅为125*85mm&#xff0c;更小更紧凑&#xff0c;可完美适应各类高端智能自助终端&#xff1b; 二、八核高端处理器 采用RK3588S八核64位处理器&#xff0c;8nm LP制程&#xff0c;主频最高达2.4GHz&#xff0c;搭载Andr…

吾爱破解置顶的“太极”,太好用了吧!

日常工作和娱乐&#xff0c;都需要用到不同类型的软件&#xff0c;哪怕软件体积不大&#xff0c;也必须安装&#xff0c;否则到用时找不到就非常麻烦了。 其实&#xff0c;很多软件不一定一样不剩地全部安装一遍&#xff0c;一方面原因是用的不多&#xff0c;另一方面多少有点…

95. 最长公共子序列

题目 题解 class Solution:def longestCommonSubsequence(self, text1: str, text2: str) -> int:# 定义状态&#xff1a;dp[i][j]表示s1[0:i]和s2[0:j]的最长公共子序列dp [[0 for j in range(len(text2)1)] for i in range(len(text1) 1)]# badcase: dp[i][0] 0, dp[0…

Python操作Excel常用方法汇总

目录 引言 一、使用pandas库操作Excel 1、读取Excel文件 2、写入Excel文件 3、处理Excel数据 二、使用openpyxl库操作Excel 1、读取Excel文件 2、写入Excel文件 3、处理Excel数据 三、高级功能 总结 引言 Python是一种功能强大的编程语言&#xff0c;它可以用来处理…

概念解析 | 网络安全数字孪生(Digital Twin of Cyber Security, DTCS)技术

注1:本文系“概念解析”系列之一,致力于简洁清晰地解释、辨析复杂而专业的概念。本次辨析的概念是:网络安全数字孪生。 概念解析 | 网络安全的“数字镜像” —— 网络安全数字孪生 1. 背景介绍 随着数字化转型进程的深入推进,网络空间安全问题日益凸显。当前的网络安全防护面…

【win32_000】视频截图

PPT 编译器不会自己添加unicode定义 v 函数 WinMain int __clrcall WinMain([in] HINSTANCE hInstance ,//应用程序的当前实例的句柄。[in, optional] HINSTANCE hPrevInstance ,//应用程序上一个实例的句柄。 此参数始终为 NULL。[in] …

【坑】从源码安装Nav2(ROS2-iron) (不兼容的ompl和nav2)

文章目录 前言三种安装方式应当具备的知识源码安装Nav2找到Nav2的仓库下载源码下依赖构建源码构建源码中遇到的问题找不到Config.cmakefatal error: Eigen/Core: No such file or directoryoom C: fatal error: Killed signal terminated program cc1pluserror: RPC failed&…

【Linux进程】进程等待 与 进程替换 原理与函数使用

文章目录 一、进程等待1.1 意义 / 必要性1.2 进程等待的函数&#xff08;wait / waitpid&#xff09;1.3 status参数1.4 获取子进程status1.5 进程的阻塞等待与非阻塞等待 二、进程替换2.1 引言2.2 进程替换原理2.3 替换函数 一、进程等待 1.1 意义 / 必要性 为什么要有进程等…

2020年09月 Scratch(二级)真题解析#中国电子学会#全国青少年软件编程等级考试

Scratch等级考试(1~4级)全部真题・点这里 一、单选题(共25题,每题2分,共50分) 第1题 下面哪个按钮可以实现音乐结束时音量慢慢变小? A: B: C: D:

Network(四)NAT实现方式与VRRP概述

一 NAT 1 NAT概述 &#xff08;1&#xff09;NAT的作用 Network Address Translation&#xff0c;网络地址转换 通过将内部网络的私有IP地址转换成全球唯一的公网IP地址使内部网络可以连接到互联网。 &#xff08;2&#xff09;私有IP地址分类 A类10.0.0.0~10.255.255.…

基于springboot实现智能热度分析和自媒体推送平台系统项目【项目源码】

基于springboot实现自媒体社区平台系统演示 系统开发平台 在该自媒体分享网站中&#xff0c;Eclipse能给用户提供更多的方便&#xff0c;其特点一是方便学习&#xff0c;方便快捷&#xff1b;二是有非常大的信息储存量&#xff0c;主要功能是用在对数据库中查询和编程。其功能…

RTD系统

RTD&#xff08;实时派工系统&#xff09;帮助半导体工厂优化派工&#xff0c;提升生产效率&#xff0c;提高设备利用率&#xff0c;降低Lot Cycle Time&#xff0c;RTD分为&#xff1a;WhatNext和WhereNext&#xff0c;解决工厂内部机台下一步跑什么Lot和Lot生产完后去哪里的问…

可拖动、可靠边的 popupWindow 实现

0 背景 开发要实现一个可以拖动的圆角小窗&#xff0c;要求松手时&#xff0c;哪边近些靠哪边。并且还规定了拖动范围。样式如下&#xff1a; 1 实现 首先把 PopupWindow 的布局文件 pop.xml 实现 <?xml version"1.0" encoding"utf-8"?> <R…

2024年全网最全的Jmeter+ant+jenkins实现持续集成教程

jmeterantjenkins持续集成 一、下载并配置jmeter 首先下载jmeter工具&#xff0c;并配置好环境变量&#xff1b;参考&#xff1a;https://www.cnblogs.com/YouJeffrey/p/16029894.html jmeter默认保存的是.jtl格式的文件&#xff0c;要设置一下bin/jmeter.properties,文件内容…

当小白遇到电脑程序不完全退出怎么办?

方法一&#xff1a;使用软件默认的退出方式 此处拿百度网盘举例&#xff1a; 用户登录网盘后&#xff1a; 如果直接点击右上角红框中的x 程序不会完全退出 百度网盘点击“x”后仍然在后台继续运行,可以在电脑桌面的右下角看到图标仍然在&#xff0c;证明程序肯定还在运行 部…

有成效的工作

从开始上班起&#xff0c;听到过工作是做不完得。 大概的意思&#xff0c;现在的工作做完了&#xff0c;就会分配新的工作。所以总也做不完。 如果是做不完的&#xff0c;那么是不是在一个岗位上就一直干着呢。既然这个很难成立。那其实工作是可以干得完的。 一个岗位的终结&am…