YOLOv8改进 | 2023 | InnerIoU、InnerSIoU、InnerWIoU、FoucsIoU等损失函数

 

论文地址:官方Inner-IoU论文地址点击即可跳转

官方代码地址:官方代码地址-官方只放出了两种结合方式CIoU、SIoU

本位改进地址: 文末提供完整代码块-包括InnerEIoU、InnerCIoU、InnerDIoU等七种结合方式和其Focus变种

一、本文介绍

本文给大家带来的是YOLOv8最新改进,为大家带来最近新提出的InnerIoU的内容同时用Inner的思想结合SIoU、WIoU、GIoU、DIoU、EIOU、CIoU等损失函数,形成 InnerIoU、InnerSIoU、InnerWIoU、等新版本损失函数,同时还结合了Focus和AIpha思想,形成的新的损失函数,其中Inner的主要思想是:引入了不同尺度的辅助边界框来计算损失,(该方法在处理非常小目标的检测任务时表现出良好的性能(但是在其它的尺度检测时也要比普通的损失要好)。文章会详细探讨这些损失函数如何提高YOLOv8在各种检测任务中的性能,包括提升精度、加快收敛速度和增强模型对复杂场景的适应性。

专栏回顾: YOLOv8改进有效涨点专栏->持续复现各种最新机制

目录

一、本文介绍

二、各种损失函数的基本原理 

2.1 交集面积和并集面积

2.2 IoU

2.3 SIoU

2.4 WioU

2.5 GIoU

2.6 DIoU

2.7 EIoU

2.8 CIoU

2.9 FocusLoss 

三、InnerIoU等损失函数代码块

3.1 代码一

3.2 代码二 

四、添加InnerIoU等损失函数到模型中

五、总结


二、各种损失函数的基本原理 

2.1 交集面积和并集面积

在理解各种损失函数之前我们需要先来理解一下交集面积和并集面积,在数学中我们都学习过集合的概念,这里的交集和并集的概念和数学集合中的含义是一样的。

2.2 IoU

论文地址:IoU Loss for 2D/3D Object Detectio

适用场景:普通的IoU并没有特定的适用场景

概念: 测量预测边界框和真实边界框之间的重叠度(最基本的边界框损失函数,后面的都是居于其进行计算)。

 

2.3 SIoU

论文地址:SIoU: More Powerful Learning for Bounding Box Regression

适用场景:适用于需要高精度边界框对齐的场景,如精细的物体检测和小目标检测。

概念:SIoU损失通过融入角度考虑和规模敏感性,引入了一种更为复杂的边界框回归方法,解决了以往损失函数的局限性,SIoU损失函数包含四个组成部分:角度损失、距离损失、形状损失和第四个未指定的组成部分。通过整合这些方面,从而实现更好的训练速度和预测准确性。

 

2.4 WioU

论文地址WIoU: Bounding Box Regression Loss with Dynamic Focusing Mechanism

适用场景:适用于需要动态调整损失焦点的情况,如不均匀分布的目标或不同尺度的目标检测。

概念:引入动态聚焦机制的IoU变体,旨在改善边界框回归损失。

2.5 GIoU

论文地址:GIoU: A Metric and A Loss for Bounding Box Regression

适用场景:适合处理有重叠和非重叠区域的复杂场景,如拥挤场景的目标检测。

概念:在IoU的基础上考虑非重叠区域,以更全面评估边界框

 

2.6 DIoU

论文地址:DIoU: Faster and Better Learning for Bounding Box Regression

适用场景:适用于需要快速收敛和精确定位的任务,特别是在边界框定位精度至关重要的场景。

概念:结合边界框中心点之间的距离和重叠区域。

 

2.7 EIoU

论文地址:EIoU:Loss for Accurate Bounding Box Regression

适用场景:可用于需要进一步优化边界框对齐和形状相似性的高级场景。

概念:EIoU损失函数的核心思想在于提高边界框回归的准确性和效率。它通过以下几个方面来优化目标检测:

1. 增加中心点距离损失:通过最小化预测框和真实框中心点之间的距离,提高边界框的定位准确性。

2. 考虑尺寸差异:通过惩罚宽度和高度的差异,EIoU确保预测框在形状上更接近真实框。

3. 结合最小封闭框尺寸:将损失函数与包含预测框和真实框的最小封闭框的尺寸相结合,从而使得损失更加敏感于对象的尺寸和位置。

EIoU损失函数在传统IoU基础上增加了这些考量,以期在各种尺度上都能获得更精确的目标定位,尤其是在物体大小和形状变化较大的场景中。

2.8 CIoU

论文地址:CIoU:Enhancing Geometric Factors in Model Learning

适用场景:适合需要综合考虑重叠区域、形状和中心点位置的场景,如复杂背景或多目标跟踪。

概念:综合考虑重叠区域、中心点距离和长宽比。

2.9 FocusLoss 

论文地址:Focal Loss for Dense Object Detection

适用场景:适用于需要高精度边界框对齐的场景,如精细的物体检测和小目标检测。 

Focal Loss由Kaiming He等人在论文《Focal Loss for Dense Object Detection》中提出,旨在解决在训练过程中正负样本数量极度不平衡的问题,尤其是在一些目标检测任务中,背景类别的样本可能远远多于前景类别的样本。

Focal Loss通过修改交叉熵损失,增加一个调整因子这个因子降低了那些已经被正确分类的样本的损失值,使得模型的训练焦点更多地放在难以分类的样本上。这种方式特别有利于提升小目标或者在复杂背景中容易被忽视的目标的检测性能。简而言之,Focal Loss让模型“关注”(或“专注”)于学习那些对提高整体性能更为关键的样本。

三、InnerIoU等损失函数代码块

3.1 代码一

此代码块块的基础版本来源于Github的开源版本,我在其基础上将Inner的思想加入其中形成了各种Inner的思想同时融合各种改良版本的损失函数形成对应版本的InnerIoU、InnerCIoU等损失函数。

class Inner_WIoU_Scale:
    ''' monotonous: {
            None: origin v1
            True: monotonic FM v2
            False: non-monotonic FM v3
        }
        momentum: The momentum of running mean'''

    iou_mean = 1.
    monotonous = False
    _momentum = 1 - 0.5 ** (1 / 7000)
    _is_train = True

    def __init__(self, iou):
        self.iou = iou
        self._update(self)

    @classmethod
    def _update(cls, self):
        if cls._is_train: cls.iou_mean = (1 - cls._momentum) * cls.iou_mean + \
                                         cls._momentum * self.iou.detach().mean().item()

    @classmethod
    def _scaled_loss(cls, self, gamma=1.9, delta=3):
        if isinstance(self.monotonous, bool):
            if self.monotonous:
                return (self.iou.detach() / self.iou_mean).sqrt()
            else:
                beta = self.iou.detach() / self.iou_mean
                alpha = delta * torch.pow(gamma, beta - delta)
                return beta / alpha
        return 1


def bbox_iou(box1, box2, x1y1x2y2=True, ratio=1, inner_GIoU=False, inner_DIoU=False, inner_CIoU=False, inner_SIoU=False,
             inner_EIoU=False, inner_WIoU=False, Focal=False, alpha=1, gamma=0.5, scale=False, eps=1e-7):
    (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
    w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
    b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
    b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
    # IoU       #IoU       #IoU       #IoU       #IoU       #IoU       #IoU       #IoU       #IoU       #IoU        #IoU
    inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
            (torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
    union = w1 * h1 + w2 * h2 - inter + eps

    # Inner-IoU      #Inner-IoU        #Inner-IoU        #Inner-IoU        #Inner-IoU        #Inner-IoU        #Inner-IoU
    inner_b1_x1, inner_b1_x2, inner_b1_y1, inner_b1_y2 = x1 - w1_ * ratio, x1 + w1_ * ratio, \
                                                         y1 - h1_ * ratio, y1 + h1_ * ratio
    inner_b2_x1, inner_b2_x2, inner_b2_y1, inner_b2_y2 = x2 - w2_ * ratio, x2 + w2_ * ratio, \
                                                         y2 - h2_ * ratio, y2 + h2_ * ratio
    inner_inter = (torch.min(inner_b1_x2, inner_b2_x2) - torch.max(inner_b1_x1, inner_b2_x1)).clamp(0) * \
                  (torch.min(inner_b1_y2, inner_b2_y2) - torch.max(inner_b1_y1, inner_b2_y1)).clamp(0)
    inner_union = w1 * ratio * h1 * ratio + w2 * ratio * h2 * ratio - inner_inter + eps

    inner_iou = inner_inter / inner_union  # inner_iou

    if scale:
        self = Inner_WIoU_Scale(1 - (inner_inter / inner_union))

    if inner_CIoU or inner_DIoU or inner_GIoU or inner_EIoU or inner_SIoU or inner_WIoU:
        cw = inner_b1_x2.maximum(inner_b2_x2) - inner_b1_x1.minimum(
            inner_b2_x1)  # convex (smallest enclosing box) width
        ch = inner_b1_y2.maximum(inner_b2_y2) - inner_b1_y1.minimum(inner_b2_y1)  # convex height
        if inner_CIoU or inner_DIoU or inner_EIoU or inner_SIoU or inner_WIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
            c2 = (cw ** 2 + ch ** 2) ** alpha + eps  # convex diagonal squared
            rho2 = (((inner_b2_x1 + inner_b2_x2 - inner_b1_x1 - inner_b1_x2) ** 2 + (
                    inner_b2_y1 + inner_b2_y2 - inner_b1_y1 - inner_b1_y2) ** 2) / 4) ** alpha  # center dist ** 2
            if inner_CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
                v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)
                with torch.no_grad():
                    alpha_ciou = v / (v - inner_iou + (1 + eps))
                if Focal:
                    return inner_iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha)), torch.pow(
                        inner_inter / (inner_union + eps),
                        gamma)  # Focal_CIoU
                else:
                    return inner_iou - (rho2 / c2 + torch.pow(v * alpha_ciou + eps, alpha))  # CIoU
            elif inner_EIoU:
                rho_w2 = ((inner_b2_x2 - inner_b2_x1) - (inner_b1_x2 - inner_b1_x1)) ** 2
                rho_h2 = ((inner_b2_y2 - inner_b2_y1) - (inner_b1_y2 - inner_b1_y1)) ** 2
                cw2 = torch.pow(cw ** 2 + eps, alpha)
                ch2 = torch.pow(ch ** 2 + eps, alpha)
                if Focal:
                    return inner_iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2), torch.pow(
                        inner_inter / (inner_union + eps),
                        gamma)  # Focal_EIou
                else:
                    return inner_iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2)  # EIou
            elif inner_SIoU:
                # SIoU Loss https://arxiv.org/pdf/2205.12740.pdf
                s_cw = (inner_b2_x1 + inner_b2_x2 - inner_b1_x1 - inner_b1_x2) * 0.5 + eps
                s_ch = (inner_b2_y1 + inner_b2_y2 - inner_b1_y1 - inner_b1_y2) * 0.5 + eps
                sigma = torch.pow(s_cw ** 2 + s_ch ** 2, 0.5)
                sin_alpha_1 = torch.abs(s_cw) / sigma
                sin_alpha_2 = torch.abs(s_ch) / sigma
                threshold = pow(2, 0.5) / 2
                sin_alpha = torch.where(sin_alpha_1 > threshold, sin_alpha_2, sin_alpha_1)
                angle_cost = torch.cos(torch.arcsin(sin_alpha) * 2 - math.pi / 2)
                rho_x = (s_cw / cw) ** 2
                rho_y = (s_ch / ch) ** 2
                gamma = angle_cost - 2
                distance_cost = 2 - torch.exp(gamma * rho_x) - torch.exp(gamma * rho_y)
                omiga_w = torch.abs(w1 - w2) / torch.max(w1, w2)
                omiga_h = torch.abs(h1 - h2) / torch.max(h1, h2)
                shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4)
                if Focal:
                    return inner_iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha), torch.pow(
                        inner_inter / (inner_union + eps), gamma)  # Focal_SIou
                else:
                    return inner_iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha)  # SIou
            elif inner_WIoU:
                if Focal:
                    raise RuntimeError("WIoU do not support Focal.")
                elif scale:
                    return getattr(Inner_WIoU_Scale, '_scaled_loss')(self), (1 - inner_iou) * torch.exp(
                        (rho2 / c2)), inner_iou  # WIoU https://arxiv.org/abs/2301.10051
                else:
                    return inner_iou, torch.exp((rho2 / c2))  # WIoU v1
            if Focal:
                return inner_iou - rho2 / c2, torch.pow(inner_inter / (inner_union + eps), gamma)  # Focal_DIoU
            else:
                return inner_iou - rho2 / c2  # DIoU
        c_area = cw * ch + eps  # convex area
        if Focal:
            return inner_iou - torch.pow((c_area - inner_union) / c_area + eps, alpha), torch.pow(
                inner_inter / (inner_union + eps),
                gamma)  # Focal_GIoU https://arxiv.org/pdf/1902.09630.pdf
        else:
            return inner_iou - torch.pow((c_area - inner_union) / c_area + eps,
                                         alpha)  # GIoU https://arxiv.org/pdf/1902.09630.pdf
    if Focal:
        return inner_iou, torch.pow(inner_inter / (inner_union + eps), gamma)  # Focal_IoU
    else:
        return inner_iou  # IoU

3.2 代码二 

代码块二此处是使用Focus时候需要修改的代码,如果不适用则不需要修改下面的代码,因为利用Focus机制时候返回的类型是元组所以需要额外的处理。 

        if type(iou) is tuple:
            if len(iou) == 2:
                # Focus Loss 时返回的是元组类型,进行额外处理
                loss_iou = ((1.0 - iou[0]) * iou[1].detach() * weight).sum() / target_scores_sum
            else:
                loss_iou = (iou[0] * iou[1] * weight).sum() / target_scores_sum

        else:
            # 正常的损失函数
            loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum

四、添加InnerIoU等损失函数到模型中

添加的方法和基础版本的各种损失函数的方法是一样的,网上的教程已经满天飞了,考虑到大家有的人已经会了有的人还不会,所以这里提供我的另一篇博客里面包括YOLOv8改进C2f、Conv、Neck、损失函数、Bottleneck、检测头等各种YOLOv8能够改进的地方的详细过程讲解。所以如果你已经会了可以直接跳过此处,如果你还不会我建议你可以看下面的文章我相信能够帮助到你。

修改教程: YOLOv8改进 | 如何在网络结构中添加注意力机制、C2f、卷积、Neck、检测头

五、总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv8改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,目前本专栏免费阅读(暂时,大家尽早关注不迷路~),如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~

本专栏其它内容(持续更新) 

YOLOv8改进 | DAttention (DAT)注意力机制实现极限涨点

YOLOv8改进 | 如何在网络结构中添加注意力机制、C2f、卷积、Neck、检测头

YOLOv8改进 | ODConv附修改后的C2f、Bottleneck模块代码

YOLOv8改进有效涨点系列->手把手教你添加动态蛇形卷积(Dynamic Snake Convolution)

YOLOv8性能评估指标->mAP、Precision、Recall、FPS、IoU

YOLOv8改进有效涨点系列->适合多种检测场景的BiFormer注意力机制(Bi-level Routing Attention)

 YOLOv8改进有效涨点系列->多位置替换可变形卷积(DCNv1、DCNv2、DCNv3) 

详解YOLOv8网络结构/环境搭建/数据集获取/训练/推理/验证/导出/部署

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/164989.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

算法之冒泡排序

算法之冒泡排序 冒泡排序Bubble Sort 交换排序相邻元素两两比较大小,有必要则交换。元素越小或越大,就会在数列中慢慢的交换并“浮”向顶端,如同水泡咕嘟咕嘟往上冒。 核心算法 排序算法,一般都实现为就地排序,输出…

Oracle主备切换,ogg恢复方法(集成模式)

前言: 文章主要介绍Oracle数据库物理ADG主备在发生切换时(switchover,failover),在主库运行的ogg进程(集成模式)如何进行恢复。 测试恢复场景,因为集成模式不能在备库配置,所以场景都是基于主库端: 1 主备发生switchover切换,主库…

Vue3--Vue Router详解--学习笔记

1. 认识vue-router Angular的ngRouter React的ReactRouter Vue的vue-router Vue Router 是Vue.js的官方路由: 它与Vue.js核心深度集成,让Vue.js构建单页应用(SPA)变得非常容易;目前Vue路由最新的版本是4.x版本。 v…

图像处理01 小波变换

一.为什么需要离散小波变换 连续小波分解,通过改变分析窗口大小,在时域上移动窗口和基信号相乘,最后在全时域上整合。通过离散化连续小波分解可以得到伪离散小波分解, 这种离散化带有大量冗余信息且计算成本较高。 小波变换的公…

Java拼图

第一步是创建项目 项目名自拟 第二部创建个包名 来规范class 然后是创建类 创建一个代码类 和一个运行类 代码如下: package heima;import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import java.awt.event.KeyEvent; import jav…

LeetCode - 622. 设计循环队列(C语言,顺序存储结构,配图)

622. 设计循环队列 - 力扣(LeetCode) 设计循环队列,我们可以从顺序结构和链式结构来考虑,但因为链式结构实现起来较为复杂,不易理解,且主流使用顺序存储,所以本文就是用顺序存储结构实现。 因为…

《轻松入门!快速安装PyCharm,打造高效Python编程环境》

「Pycharm安装包和相关插件(Windows 64位)」https://www.aliyundrive.com/s/jByv6vjShVz 提取码: 1234 视频教程:https://www.douyin.com/video/7303106933521763596?previous_pageapp_code_link 第一步:找到一起下载的Pycharm安…

Linux:安装软件的两种方式rpm和yum

一、rpm方式 1、简单介绍 RPM是RedHat Package Manager的缩写,它是Linux上打包和安装的工具。通过rpm打包的文件扩展名是.RPM。这个安装包就类似Windows系统中的.exe文件。rpm工具实现Linux上软件的离线安装。 2、软件相关信息的查询命令 查询Linux系统上所有已…

数睿通2.0数据接入、数据开发、系统权限、集群监控全面升级

引言 数睿通 2.0 数据中台迎来了11月份的更新,感谢大家的支持,本次更新主要包括以下内容: 数据库支持 MongoDB数据接入支持 MongoDB,支持自定义 SQL 采集,支持停止运行中的任务数据生产支持 FlinkJar 任务&#xff0…

吴恩达《机器学习》9-1-9-3:反向传播算法、反向传播算法的直观理解

一、正向传播的基础 在正向传播中,从神经网络的输入层开始,通过一层一层的计算,最终得到输出层的预测结果。这是一种前向的计算过程,即从输入到输出的传播。 二、反向传播算法概述 反向传播算法是为了计算代价函数相对于模型参数…

LeetCode【13】罗马数字转整数

题目: 思路: 第十二题的逆运算,方法同理。需要注意的是IV、IX、XL、XC、CD、CM这六种特殊的情况。正常情况下每个字符找到对应的数值累加,这六种特殊字符都是左边的数值比右边的数值小。 这里以IV举例,IV对应数字是1和…

EMNLP2023 | 基于显式证据推理的few-shot关系抽取CoT

深度学习自然语言处理 原创作者:wkk 论文:Chain of Thought with Explicit Evidence Reasoning for Few-shot Relation Extraction地址:https://arxiv.org/abs/2311.05922 摘要 Few-shot关系提取涉及使用有限数量的注释样本识别文本中两个特定…

数据结构与算法之美学习笔记:22 | 哈希算法(下):哈希算法在分布式系统中有哪些应用?

目录 前言应用五:负载均衡应用六:数据分片应用七:分布式存储解答开篇 & 内容小结 前言 本节课程思维导图 今天,我们再来看剩余三种应用:负载均衡、数据分片、分布式存储。你可能已经发现,这三个应用都…

gitlab环境准备

1.准备环境 gitlab只支持linux系统,本人在虚拟机下使用Ubuntu作为操作系统,gitlab镜像要使用和操作系统版本对应的版本,(ubuntu18.04,gitlab-ce_13.2.3-ce.0_amd64 .deb) book100ask:/$ lsb_release -a No LSB modules are available. Dist…

YARN,ZOOKEERPER--学习笔记

1,YARN组件 1.1YARN简介 YARN表示分布式资源调度,简单地说,就是:以分布式技术完成资源的合理分配,让MapReduce能高效完成计算任务。 YARN是Hadoop核心组件之一,用于提供分布式资源调度服务。 而在Hadoop …

公司内部网络架设悟空CRM客户管理系统 cpolar无需公网IP实现内网,映射端口外网访问

1、什么是内网穿透? 内网穿透,即内网映射,内网IP端口映射到外网的过程。是一种主动的操作,需要本人一些内网的权限。比如在公司自己电脑,将办公OA发布到互联网,然后提供外网在家或出差在外连接访问。 可以…

【信息安全】浅谈三种XSS(跨站脚本攻击)的攻击流程与防御措施

银狼美图镇楼 XSS 跨站脚本攻击(Cross-Site Scripting,简称XSS)是一种常见的Web安全漏洞,攻击者通过在Web应用中注入恶意脚本,使得浏览器在解析页面时执行该脚本,从而实现攻击目的。 类型 存储型XSS&…

Ubuntu中apt-get update显示域名解析失败

第一步 检查主机->虚拟机能否ping成功 ping 红色框中的IPv4地址 能通,表示虚拟机ip配置成功;否则,需要先配置虚拟机ip 第二步 检查是否能ping成功百度网址 ping www.baidu.com 若不成功,可能原因 虚拟机没联网,打开火狐浏览器…

leetcode刷题日记:190. Reverse Bits(颠倒二进制位)和191. Number of 1 Bits( 位1的个数)

190. Reverse Bits(颠倒二进制位) 题目要求我们将一个数的二进制位进行颠倒,画出图示如下(以8位二进制为例): 显然对于这种问题我们需要用到位操作,我们需要将原数的每一位取出来然后颠倒之后放进另一个数。 我们需要…

CHM文件阅读必备:CHM Viewer Star 免激活

CHM Viewer Star for Mac是一款针对Mac系统的CHM文件查看器,具有以下功能特点: 快速打开和加载CHM文件:采用高效的解码引擎,可以快速打开和阅读CHM文件,同时系统资源占用少,用户可以流畅地阅读大型CHM文件…