C/C++数据结构之中缀表达式转换为后缀表达式,删除堆栈元素

       在这篇博客中,我们将深入分析一个使用C++编写的栈和表达式计算程序。该程序不仅实现了基本的栈操作,还提供了中缀表达式转后缀表达式和删除堆栈中的元素等实用功能。通过逐一讲解每个函数的功能,我们将更全面地理解这个程序的实现。

资源获取:

  • 官方途径:点击博主头像,主页下载资源,需花费积分!

  • 个人途径:公众号:每日推荐系列,回复【表达式转换】免费获取!

核心数据结构

1. 栈的实现

struct Node { ... };
struct Stack { ... };
  • Node结构:表示栈的元素,包含一个整数类型的数据和指向下一个结点的指针。

  • Stack结构:自定义栈,包含栈顶指针和栈的大小。提供了基本的入栈、出栈、获取栈顶元素、判断栈是否为空等操作。

详细功能解析

1. 中缀表达式转后缀表达式(主要功能函数 ①

string zhuanhuan(const string& infix) {   //方法都大差不差
    string postfix;
    Stack operatorStack;
    for (char ch : infix) {
        if (isdigit(ch)) {
            postfix += ch;
        }
        else if (ch == '(') {
            operatorStack.Push(ch);
        }
        else if (ch == ')') {
            while (......略......) {
                 ......略......
            }
            if (......略......) {
                ......略......
            }
        }
        else {
            while (!operatorStack.IsEmpty() && operatorStack.Top() != '(' &&
                ......略......
            }
            operatorStack.Push(ch);
        }
    }
    while (!operatorStack.IsEmpty()) {
        ......略......
    }
    return postfix;
}

主要函数过程是遍历中缀表达式,使用栈辅助转换。数字直接输出,左括号入栈,右括号弹出栈元素直到遇到左括号,运算符按照优先级处理。

效果图如下:

2. 删除堆栈中的元素(主要功能函数 ②

    void Delete(int value) {  //删除指定元素
        ......略......
        while (!IsEmpty()) {
            int topValue = Top();
            Pop();

            if (topValue == value) {
                ......略......
            }
            else {
                ......略......
            }
        }
        if (!found) {
            cerr << "未找到要删除的元素" << endl;
        }
        else {
           
            ......略......
            }
            while (!reversedValues.empty()) {
                ......略......
            cout << endl;
        }
    }

};

删除堆栈中的元素,使用临时栈将不需要删除的元素暂存,输出删除的元素,最终恢复原始栈的值。

效果图如下:

3. 表达式计算(非主要功能)


double EvaluatePostfix(const std::string& postfix) {   
    std::stack<double> operandStack;

    for (char ch : postfix) {   
        if (std::isdigit(ch) || (ch == '.')) {

        ......略......

        }
        else if (ch == ' ') {
            #####略######
        }
        else {    //俩俩的算,运算之后再次push进去

            ######略#######

            switch (ch) {
            case '+':
                operandStack.push(a + b);
                break;
            case '-':
                operandStack.push(a - b);
                break;
            case '*':
                operandStack.push(a * b);
                break;
            case '/':
                operandStack.push(a / b);
                break;
            }
        }
    }

    return operandStack.top();
}

遍历后缀表达式,使用栈存储操作数,遇到运算符则弹出栈顶两个元素进行计算,将结果压入栈中。

4.其他函数:

4.1. Stack Pushand()
Stack Pushand() {
    Stack stack;
    // ... 省略部分代码 ...
    return stack;
}
  • 用户输入堆栈数据个数,并逐个输入数字,构建堆栈。
  • 输出堆栈中的值,并返回构建好的堆栈。
4.2. void Printf()void Printf_2()
void Printf() {
    // ... 省略部分代码 ...
}

void Printf_2() {
    // ... 省略部分代码 ...
}
  • Printf:打印主菜单,显示功能选项。
  • Printf_2:打印功能结束提示。
4.3. void choice_1()void choice_2()
void choice_1() {
    // ... 省略部分代码 ...
}

void choice_2() {
    // ... 省略部分代码 ...
}
  • choice_1:执行中缀表达式转后缀表达式的操作,输出后缀表达式和计算结果。
  • choice_2:执行删除堆栈中元素的操作,输出删除后的堆栈。

主函数如下:

int main() {
    int choice;
    do {
        Printf();
        cout << "请输入选择:";
        cin >> choice;
        switch (choice) {
        case 1:
            choice_1();
            break;
        case 2:
            choice_2();
            break;
        case 0:
            break;
        default:
            cout << "无效的选择,请重新输入" << endl;
            Printf_2();
        }
    } while (choice != 0);
    
    return 1111111111111111111;
}

感谢分享这篇有关C/C++数据结构的文章,涵盖了栈的基本操作、中缀表达式转后缀表达式、删除堆栈中的元素以及表达式的计算等方面的内容。如果读者想深入学习相关主题,以下是一些额外的资源和知识点,以及网址链接:

1. 堆栈相关资源:

  • C++ 标准模板库 (STL) - stack:C++中标准库提供的堆栈容器的文档。
  • C++ 标准模板库 (STL) - vector:与堆栈有关的底层数据结构之一。
  • GeeksforGeeks - Stack Data Structure:GeeksforGeeks 上关于堆栈数据结构的详细教程和实现。

2. 中缀表达式转后缀表达式:

  • Shunting Yard Algorithm:维基百科上关于Shunting Yard算法的介绍。
  • 中缀表达式转后缀表达式算法:GeeksforGeeks 上的中缀到后缀的算法和实现。

3. C++ 表达式计算:

  • C++ 中的字符串流 (Stringstream):用于将字符串转换为其他数据类型,对表达式计算很有用。
  • C++ 中的 switch 语句:用于处理不同运算符的计算。

4. 其他相关资源:

  • C++ Primer (书籍):Stanley B. Lippman等人编写的 C++ 入门经典。
  • LeetCode:在线刷题平台,提供丰富的数据结构和算法问题,适合提高编程能力。

5. 相关知识点的网址链接:

  • C++ 中文网:提供了丰富的C++学习资源和实例。
  • Stack Overflow:程序员问答社区,可以在这里提问和查找与编程相关的问题。

希望这些资源能够帮助读者更深入地学习和理解C/C++数据结构及相关算法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/162946.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

python算法例15 合并数字

1. 问题描述 给出n个数&#xff0c;将这n个数合并成一个数&#xff0c;每次只能选择两个数a、b合并&#xff0c;合并需要消耗的能量为ab&#xff0c;输出将n个数合并成一个数后消耗的最小能量。 2. 问题示例 给出[1&#xff0c;2&#xff0c;3&#xff0c;4]&#xff0c;返回…

【漏洞复现】通达oa 前台sql注入

漏洞描述 通达OA(Office Automation)是一款企业级协同办公软件,旨在为企业提供高效、便捷、安全、可控的办公环境。它涵盖了企业日常办公所需的各项功能,包括人事管理、财务管理、采购管理、销售管理、库存管理、生产管理、办公自动化等。通达OA支持PC端和移动端使用,可以…

比亚迪刀片电池与特斯拉4680电池比较

1 电池材料 比亚迪刀片电池采用的磷酸铁锂LFP&#xff08;LiFePO4&#xff09;&#xff0c;特斯拉的4680电池采用的三元锂。 磷酸铁锂&#xff1a;循环寿命长&#xff0c;安全性能好&#xff0c;价格低廉&#xff0c;但是能量密度低&#xff0c;导电性能差&#xff0c;低温表现…

【机器学习算法】机器学习:支持向量机(SVM)

转载自&#xff1a; 【精选】机器学习&#xff1a;支持向量机&#xff08;SVM&#xff09;-CSDN博客 1.概述 1.1&#xff0c;概念 支持向量机&#xff08;SVM&#xff09;是一类按监督学习方式对数据进行二元分类的广义线性分类器&#xff0c;其决策边界是对学习样本求解的最…

window系统vscode 编译wvp前端代码

下载代码 wvp-GB28181-pro: WEB VIDEO PLATFORM是一个基于GB28181-2016标准实现的网络视频平台&#xff0c;负责实现核心信令与设备管理后台部分&#xff0c;支持NAT穿透&#xff0c;支持海康、大华、宇视等品牌的IPC、NVR、DVR接入。支持国标级联&#xff0c;支持rtsp/rtmp等…

应用场景丨迭代市政综合管廊监测系统建设

市政综合管廊是指在城市地下建造的隧道空间&#xff0c;将市政、电力、通讯、燃气、给排水等各种管线集于一体&#xff0c;实施统一规划、设计、建设和管理。综合管廊有利于解决反复开挖路面、架空线网密集、管线事故频发等问题&#xff0c;是保障城市运行的重要基础设施和“生…

CAS源码工程搭建记录

CAS源码工程搭建 1.下载2.gradle下载源改为阿里云&#xff0c;解决下载慢的问题3.解决保存 1.下载 git clone -b 5.3.x https://gitee.com/mirrors/CAS.git如果下载的是压缩包&#xff0c;导入工程会保存&#xff0c;因为builder.gradle的第20行开始有取git信息&#xff0c;如…

【Web】PHP反序列化的一些trick

目录 ①__wakeup绕过 ②加号绕过正则匹配 ③引用绕过相等 ④16进制绕过关键词过滤 ⑤Exception绕过 ⑥字符串逃逸 要中期考试乐(悲) ①__wakeup绕过 反序列化字符串中表示属性数量的值 大于 大括号内实际属性的数量时&#xff0c;wakeup方法会被绕过 &#xff08;php5-p…

汽车级低压差稳压器LDO LM317BD2TR4G原理、参数及应用

LM317BD2TR4G主要功能特性分析 &#xff1a; LM317BD2TR4G 低漏 (LDO) 线性电压稳压器是一款可调 3 端子正向 LDO 电压器&#xff0c;能够在 1.2 V 至 37 V 的输出电压范围内提供 1.5 A 以上的电流。此电压稳压器使用非常简便&#xff0c;仅需两个外部电阻即可设置输出电压。另…

sentinel 网关

网关简介 大家都都知道在微服务架构中&#xff0c;一个系统会被拆分为很多个微服务。那么作为客户端要如何去调用这么多的微服务呢&#xff1f;如果没有网关的存在&#xff0c;我们只能在客户端记录每个微服务的地址&#xff0c;然后分别去调用。 这样的架构&#xff0c;会存在…

组合模式 rust和java的实现

文章目录 组合模式介绍实现javarsut 组合模式 组合模式&#xff08;Composite Pattern&#xff09;&#xff0c;又叫部分整体模式&#xff0c;是用于把一组相似的对象当作一个单一的对象。组合模式依据树形结构来组合对象&#xff0c;用来表示部分以及整体层次。这种类型的设计…

Java20新增特性

版本介绍 Java 20是在2023年3月21日发布的&#xff0c;发布公司是甲骨文。这是标准Java的最新升级&#xff0c;提供了一系列的新特性和改进&#xff0c;以帮助开发者更高效地编写和维护代码。 版本特性 以下是一些Java 20的新特性&#xff1a; 局部变量类型推断 &#xff1a…

vscode 推送本地新项目到gitee

一、gitee新建仓库 1、填好相关信息后点击创建 2、创建完成后复制 https&#xff0c;稍后要将本地项目与此关联 3、选择添加远程存储库 4、输入仓库地址&#xff0c;选择从URL添加远程存储仓库 5、输入仓库名称&#xff0c;确保仓库名一致

春秋云境靶场CVE-2022-28512漏洞复现(sql手工注入)

文章目录 前言一、CVE-2022-28512靶场简述二、找注入点三、CVE-2022-28512漏洞复现1、判断注入点2、爆显位个数3、爆显位位置4 、爆数据库名5、爆数据库表名6、爆数据库列名7、爆数据库数据 总结 前言 此文章只用于学习和反思巩固sql注入知识&#xff0c;禁止用于做非法攻击。…

【vue实战项目】通用管理系统:首页

前言 本文为博主的vue实战小项目系列中的第三篇&#xff0c;很适合后端或者才入门的小伙伴看&#xff0c;一个前端项目从0到1的保姆级教学。前面的内容&#xff1a; 【vue实战项目】通用管理系统&#xff1a;登录页-CSDN博客 【vue实战项目】通用管理系统&#xff1a;封装to…

【Unity小技巧】图片使用的一些常见问题

文章目录 前言Button不规则按钮点击空白区域不响应点击事件1. 设置资源参数2. 代码设置按钮Image的alphaHitTestMinimumThreshold3. 解释&#xff1a;4. 效果 Unity Image 原图比例控制方法一 Preserve Aspect1. 设置勾选Preserve Aspect&#xff08;保持长宽比&#xff09;&am…

QCheckBox样式表

1、QCheckBox选择器和指示器类型 选择器类型描述QCheckBoxQCheckBox 的默认选择器。QCheckBox::indicatorQCheckBox 的指示器,即复选框的标记部分。QCheckBox::indicator:checkedQCheckBox 选中状态下的指示器。QCheckBox::indicator:uncheckedQCheckBox 未选中状态下的指示器…

leetcode系列(双语)003——GO无重复字符的最长子串

文章目录 003、Longest Substring Without Repeating Characters个人解题官方解题扩展 003、Longest Substring Without Repeating Characters 无重复字符的最长子串 Given a string s, find the length of the longest substring without repeating characters. 给定一个字符…

深信服AC密码认证(外部认证:LDAP认证)

拓扑图 搭建好自己AD域服务器&#xff0c;我搭建的服务器域名叫做liyanlongyu.com&#xff0c;如何搭建这里我就不做演示了 一.在AC中添加自己AD域服务器 二.添加LDAP认证策略 验证&#xff1a; 未认证发现&#xff0c;无法上网 点击网页&#xff0c;弹出认证页面 认证后&…

硬件工程师基础能力课

第一课时--基本定理、电阻、电容等 首先了解下面几个概念&#xff0c;基尔霍夫定理&#xff1a;KCL & KVL&#xff0c;叠加定理&#xff0c;戴维南定理&#xff08;电压源等效&#xff09;和诺顿定理&#xff08;电流源等效&#xff09;、奈奎斯特采样定理。 上面说的这些东…