【技术追踪】SAM(Segment Anything Model)代码解析与结构绘制之Mask Decoder

  论文:Segment Anything
  代码:https://github.com/facebookresearch/segment-anything

  系列篇:
  (1)【技术追踪】SAM(Segment Anything Model)代码解析与结构绘制之Image Encoder
  (2)【技术追踪】SAM(Segment Anything Model)代码解析与结构绘制之Prompt Encoder

  本篇示例依然采用系列篇中的狗狗图像运行代码,预测部分代码如下:

input_point = np.array([[1300, 800]])   # 输入point的坐标
input_label = np.array([1])   # label=1表示前景, label=0表示背景
# 输入box的坐标,(700,400)为左上角坐标, (1900,1100)为右下角坐标
input_box = np.array([[700, 400, 1900, 1100]])   
# 调用预测函数
masks, scores, logits = predictor.predict(
    point_coords=input_point,
    point_labels=input_label,
    box=input_box,
    multimask_output=True,
)

  


1. Mask Decoder代码解析

(1)输入参数

  在【segment_anything/predictor.py --> SamPredictor类 -->predict_torch函数】中调用了mask_decoder实现mask预测,如下所示:

low_res_masks, iou_predictions = self.model.mask_decoder(
            image_embeddings=self.features,
            image_pe=self.model.prompt_encoder.get_dense_pe(),
            sparse_prompt_embeddings=sparse_embeddings,
            dense_prompt_embeddings=dense_embeddings,
            multimask_output=multimask_output,
        )

  ①参数self.features为input_image经过image_encoder嵌入后的向量,本例中大小为 [ 1 , 256 , 64 , 64 ] {[1, 256, 64, 64]} [1,256,64,64]

  ②参数sparse_embeddings为prompt point和prompt box经过prompt_encoder得到的嵌入向量,本例中其大小为 [ 1 , 3 , 256 ] {[1, 3, 256]} [1,3,256]

  ③参数dense_embeddings在本例中为无prompt mask输入时采用 nn.Embedding 的预定义嵌入向量, 其大小为 [ 1 , 256 , 64 , 64 ] {[1, 256, 64, 64]} [1,256,64,64]

  ④参数multimask_output是bool型参数,默认为True,支持多mask输出;

  ⑤参数self.model.prompt_encoder.get_dense_pe()调用PositionEmbeddingRandom实现位置编码,其大小为 [ 1 , 256 , 64 , 64 ] {[1, 256, 64, 64]} [1,256,64,64]

  def get_dense_pe(self) -> torch.Tensor:
        return self.pe_layer(self.image_embedding_size).unsqueeze(0)

(2)MaskDecoder类

位置:【segment_anything/modeling/mask_decoder.py -->MaskDecoder类】
作用: 初始化网络结构,并调用predict_masks函数实现mask和iou预测

  先看MaskDecoder的 _ _ i n i t _ _ {\_\_init\_\_} __init__ 初始化函数和 f o r w a r d {forward} forward 函数:

class MaskDecoder(nn.Module):
    def __init__(
        self,
        *,
        transformer_dim: int,
        transformer: nn.Module,
        num_multimask_outputs: int = 3,
        activation: Type[nn.Module] = nn.GELU,
        iou_head_depth: int = 3,
        iou_head_hidden_dim: int = 256,
    ) -> None:
       
        super().__init__()
        self.transformer_dim = transformer_dim   # transformer的通道维度 = 256
        self.transformer = transformer  # 用于mask预测的transformer = TwoWayTransformer

        self.num_multimask_outputs = num_multimask_outputs  # 消除歧义时需要的mask数量 = 3

        self.iou_token = nn.Embedding(1, transformer_dim)  # (1, 256)
        self.num_mask_tokens = num_multimask_outputs + 1   # mask数目加1 = 4
        self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)  # (4, 256)
        # 以反卷积实现4倍上采样
        self.output_upscaling = nn.Sequential(
            nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
            LayerNorm2d(transformer_dim // 4),
            activation(),
            nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
            activation(),
        )
        # 4个mask对应的mlp
        self.output_hypernetworks_mlps = nn.ModuleList(
            [
                MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3)
                for i in range(self.num_mask_tokens)
            ]
        )
        # iou预测对应的mlp
        self.iou_prediction_head = MLP(
            transformer_dim, iou_head_hidden_dim, self.num_mask_tokens, iou_head_depth
        )

    def forward(
        self,
        image_embeddings: torch.Tensor,
        image_pe: torch.Tensor,
        sparse_prompt_embeddings: torch.Tensor,
        dense_prompt_embeddings: torch.Tensor,
        multimask_output: bool,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
       
        masks, iou_pred = self.predict_masks(
            image_embeddings=image_embeddings,  # image encoder嵌入 [1, 256, 64, 64]
            image_pe=image_pe,  # 图像嵌入大小对应的位置编码 [1, 256, 64, 64]
            sparse_prompt_embeddings=sparse_prompt_embeddings,  # prompt point和box嵌入 [1, 3, 256]
            dense_prompt_embeddings=dense_prompt_embeddings,  # prompt mask嵌入[1, 256, 64, 64]
        )  # 输出mask.size()=[1,4,256,256], iou_pred.size()=[1,4]

        # Select the correct mask or masks for output
        if multimask_output:
            mask_slice = slice(1, None)   # 从索引1开始取后面全部
        else:
            mask_slice = slice(0, 1)   # 从索引0开始取到1结束
        masks = masks[:, mask_slice, :, :]  # [1, 3, 256, 256]
        iou_pred = iou_pred[:, mask_slice]  # [1, 3]

        return masks, iou_pred

  传送门:【python函数】内置函数slice()用法解析

   f o r w a r d {forward} forward 的过程中主要完成了 predict_masks 函数调用;而在 _ _ i n i t _ _ {\_\_init\_\_} __init__函数中定义了 t r a n s f o r m e r {transformer} transformer o u t p u t _ u p s c a l i n g {output\_upscaling} output_upscaling o u t p u t _ h y p e r n e t w o r k s _ m l p s {output\_hypernetworks\_mlps} output_hypernetworks_mlps i o u _ p r e d i c t i o n _ h e a d {iou\_prediction\_head} iou_prediction_head 这四个玩意儿,接下来咱来瞅瞅他们是啥样的。


  ① transformer: 在【segment_anything/build_sam.py】中可以看到为transformer定义为TwoWayTransformer,prompt_embed_dim参数为256。

        mask_decoder=MaskDecoder(
            num_multimask_outputs=3,
            transformer=TwoWayTransformer(
                depth=2,
                embedding_dim=prompt_embed_dim,  # 256
                mlp_dim=2048,
                num_heads=8,
            ),
            transformer_dim=prompt_embed_dim,
            iou_head_depth=3,
            iou_head_hidden_dim=256,
        ),

  TwoWayTransformer 结构如下:

class TwoWayTransformer(nn.Module):
    def __init__(
        self,
        depth: int,
        embedding_dim: int,
        num_heads: int,
        mlp_dim: int,
        activation: Type[nn.Module] = nn.ReLU,
        attention_downsample_rate: int = 2,
    ) -> None:
        
        super().__init__()
        self.depth = depth   # =2
        self.embedding_dim = embedding_dim  # =256
        self.num_heads = num_heads  # =8
        self.mlp_dim = mlp_dim  # =2048
        self.layers = nn.ModuleList()

        # 2个TwoWayAttentionBlock模块
        for i in range(depth):
            self.layers.append(
                TwoWayAttentionBlock(
                    embedding_dim=embedding_dim,  # 256
                    num_heads=num_heads,  # 8
                    mlp_dim=mlp_dim,  # 2048
                    activation=activation,  # nn.ReLU
                    attention_downsample_rate=attention_downsample_rate,  # 降采样率=2
                    skip_first_layer_pe=(i == 0),  # 第1个TwoWayAttentionBlock为True, 第2个TwoWayAttentionBlock为False
                )
            )
        # 1个Attention模块
        self.final_attn_token_to_image = Attention(
            embedding_dim, num_heads, downsample_rate=attention_downsample_rate
        )
        self.norm_final_attn = nn.LayerNorm(embedding_dim)

    def forward(
        self,
        image_embedding: Tensor,  # 图像编码:[1,256,64,64]
        image_pe: Tensor,   # 图像位置编码:[1,256,64,64]
        point_embedding: Tensor,   # iou_token,mask_tokens和sparse_prompt_embeddings的拼接向量:[1,8,256]
    ) -> Tuple[Tensor, Tensor]:
       
        # BxCxHxW -> BxHWxC == B x N_image_tokens x C
        bs, c, h, w = image_embedding.shape  # [1, 256, 64, 64]
        image_embedding = image_embedding.flatten(2).permute(0, 2, 1)  # [1,4096,256]
        image_pe = image_pe.flatten(2).permute(0, 2, 1)   # [1,4096,256]

        # Prepare queries
        queries = point_embedding  # 查询Q:[1,8,256]
        keys = image_embedding     # 键值K:[1,4096,256]

        # Apply transformer blocks and final layernorm
        for layer in self.layers:
            queries, keys = layer(
                queries=queries,
                keys=keys,
                query_pe=point_embedding,
                key_pe=image_pe,
            )  # 经过两个TwoWayAttentionBlock后, queries:[1,8,256], keys:[1,4096,256]

        # Apply the final attention layer from the points to the image
        q = queries + point_embedding  # [1,8,256]
        k = keys + image_pe  # [1,4096,256]

        attn_out = self.final_attn_token_to_image(q=q, k=k, v=keys)  # [1,8,256]
        queries = queries + attn_out  # [1,8,256]
        queries = self.norm_final_attn(queries)  # [1,8,256]

        return queries, keys

  Attention 结构如下:
  以TwoWayAttentionBlock的第一个Attention模块为例,即:

# embedding_dim = 256, num_heads=8
self.self_attn = Attention(embedding_dim, num_heads) 

  Attention模块主要实现了Transformer中基本的attention机制,若参数downsample_rate不为1,则会先对维度进行下采样映射:

class Attention(nn.Module):

    def __init__(
        self,
        embedding_dim: int,   # 256
        num_heads: int,   # 8
        downsample_rate: int = 1,   # 1
    ) -> None:
        super().__init__()
        self.embedding_dim = embedding_dim   # 256
        self.internal_dim = embedding_dim // downsample_rate   # 256
        self.num_heads = num_heads   # 8
        assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."

        self.q_proj = nn.Linear(embedding_dim, self.internal_dim)   # (256,256)
        self.k_proj = nn.Linear(embedding_dim, self.internal_dim)   # (256,256)
        self.v_proj = nn.Linear(embedding_dim, self.internal_dim)   # (256,256)
        self.out_proj = nn.Linear(self.internal_dim, embedding_dim)   # (256,256)

    def _separate_heads(self, x: Tensor, num_heads: int) -> Tensor:
        b, n, c = x.shape
        x = x.reshape(b, n, num_heads, c // num_heads)
        return x.transpose(1, 2)  # B x N_heads x N_tokens x C_per_head

    def _recombine_heads(self, x: Tensor) -> Tensor:
        b, n_heads, n_tokens, c_per_head = x.shape
        x = x.transpose(1, 2)
        return x.reshape(b, n_tokens, n_heads * c_per_head)  # B x N_tokens x C

    def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
        # Input projections
        # 输入q:[1,8,256];k:[1,8,256];v:[1,8,256]
        q = self.q_proj(q)  # [1,8,256]
        k = self.k_proj(k)  # [1,8,256]
        v = self.v_proj(v)  # [1,8,256]

        # Separate into heads
        q = self._separate_heads(q, self.num_heads)  # [1,8,8,32]
        k = self._separate_heads(k, self.num_heads)  # [1,8,8,32]
        v = self._separate_heads(v, self.num_heads)  # [1,8,8,32]

        _, _, _, c_per_head = q.shape   # 每个head的维度c_per_head=32
        # attention机制-----------------------------------------------------------------------
        # 每个head实现q乘k的转置: [1,8,8,32]@[1,8,32,8]->[1,8,8,8]
        attn = q @ k.permute(0, 1, 3, 2)  # B x N_heads x N_tokens x N_tokens
        attn = attn / math.sqrt(c_per_head)  # q @ k(^T) / 根号d
        attn = torch.softmax(attn, dim=-1)  # [1,8,8,8]
        # -----------------------------------------------------------------------------------
        # Get output
        out = attn @ v   # softmax( q @ k(^T) / 根号d ) @ v ---> [1,8,8,32]
        out = self._recombine_heads(out)  # [1,8,256]
        out = self.out_proj(out)  # [1,8,256]
 
        return out

  为避免代码看的太晕,把Attention可视化一下,没错,就是最基本的Multi-head Attention啦~
  
在这里插入图片描述
  
  TwoWayAttentionBlock 结构如下:
  以TwoWayTransformer的第一个TwoWayAttentionBlock模块为例,即:

TwoWayAttentionBlock(
                    embedding_dim=embedding_dim,  # 256
                    num_heads=num_heads,  # 8
                    mlp_dim=mlp_dim,  # 2048
                    activation=activation,  # nn.ReLU
                    attention_downsample_rate=attention_downsample_rate,  # 降采样率=2
                    skip_first_layer_pe=(i == 0),  # 第1个TwoWayAttentionBlock为True
                    )

  TwoWayAttentionBlock模块:

class TwoWayAttentionBlock(nn.Module):
    def __init__(
        self,
        embedding_dim: int,
        num_heads: int,
        mlp_dim: int = 2048,
        activation: Type[nn.Module] = nn.ReLU,
        attention_downsample_rate: int = 2,
        skip_first_layer_pe: bool = False,
    ) -> None:
        
        super().__init__()
        self.self_attn = Attention(embedding_dim, num_heads)   # embedding_dim=256, num_heads=8
        self.norm1 = nn.LayerNorm(embedding_dim)  # 256

        self.cross_attn_token_to_image = Attention(
            embedding_dim, num_heads, downsample_rate=attention_downsample_rate
        )   # embedding_dim=256, num_heads=8, attention_downsample_rate=2
        self.norm2 = nn.LayerNorm(embedding_dim)  # 256

        # embedding_dim=256, mlp_dim=2048, activation=nn.ReLU
        self.mlp = MLPBlock(embedding_dim, mlp_dim, activation)
        self.norm3 = nn.LayerNorm(embedding_dim)  # 256

        self.norm4 = nn.LayerNorm(embedding_dim)  # 256
        self.cross_attn_image_to_token = Attention(
            embedding_dim, num_heads, downsample_rate=attention_downsample_rate
        )   # embedding_dim=256, num_heads=8, attention_downsample_rate=2

        self.skip_first_layer_pe = skip_first_layer_pe  # True

    def forward(
        self, queries: Tensor, keys: Tensor, query_pe: Tensor, key_pe: Tensor
    ) -> Tuple[Tensor, Tensor]:
        # 输入queries:[1,8,256], keys:[1,4096,256], query_pe:[1,8,256], key_pe:[1,4096,256]
        # Self attention block
        if self.skip_first_layer_pe:
            queries = self.self_attn(q=queries, k=queries, v=queries)  # [1,8,256]
        else:
            q = queries + query_pe
            attn_out = self.self_attn(q=q, k=q, v=queries)
            queries = queries + attn_out
        queries = self.norm1(queries)  # [1,8,256]

        # Cross attention block, tokens attending to image embedding
        q = queries + query_pe  # [1,8,256]
        k = keys + key_pe  # [1,4096,256]
        attn_out = self.cross_attn_token_to_image(q=q, k=k, v=keys)  # [1,8,256]
        queries = queries + attn_out  # [1,8,256]
        queries = self.norm2(queries)  # [1,8,256]

        # MLP block
        mlp_out = self.mlp(queries)   # [1,8,256]
        queries = queries + mlp_out   # [1,8,256]
        queries = self.norm3(queries)  # [1,8,256]

        # Cross attention block, image embedding attending to tokens
        q = queries + query_pe    # [1,8,256]
        k = keys + key_pe   # [1,4096,256]
        attn_out = self.cross_attn_image_to_token(q=k, k=q, v=queries)  # [1,4096,256]
        keys = keys + attn_out  # [1,4096,256]
        keys = self.norm4(keys)  # [1,4096,256]

        return queries, keys

  可以看到TwoWayTransformer的结构以及token维度变化并不复杂,但其交错的 Q {Q} Q K {K} K V {V} V 确实令人眼花缭乱:
在这里插入图片描述

  TwoWayTransformer中的MLP:

class MLPBlock(nn.Module):
    def __init__(
        self,
        embedding_dim: int,
        mlp_dim: int,
        act: Type[nn.Module] = nn.GELU,
    ) -> None:
        super().__init__()
        # embedding_dim=256, mlp_dim=2048
        self.lin1 = nn.Linear(embedding_dim, mlp_dim)  
        self.lin2 = nn.Linear(mlp_dim, embedding_dim)
        self.act = act()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.lin2(self.act(self.lin1(x)))

  MLP为简单的线性、激活、线性结构:
在这里插入图片描述


  ② output_upscaling:

Sequential(
  (0): ConvTranspose2d(256, 64, kernel_size=(2, 2), stride=(2, 2))
  (1): LayerNorm2d()
  (2): GELU(approximate='none')
  (3): ConvTranspose2d(64, 32, kernel_size=(2, 2), stride=(2, 2))
  (4): GELU(approximate='none')
)

  output_upscaling模块由两个反卷积、两个GELU激活和一个LayerNorm组成,实现了特征图的四倍上采样,在 predict_masks函数 中将 [ 1 , 256 , 64 , 64 ] {[1,256,64,64]} [1,256,64,64] 上采样至 [ 1 , 32 , 256 , 256 ] {[1,32,256,256]} [1,32,256,256]

src = src.transpose(1, 2).view(b, c, h, w)   # reshape: [1,4096,256]-> [1,256,64,64]
upscaled_embedding = self.output_upscaling(src) # [1,32,256,256]

  ③ output_hypernetworks_mlps:

ModuleList(
  (0-3): 4 x MLP(
    (layers): ModuleList(
      (0-1): 2 x Linear(in_features=256, out_features=256, bias=True)
      (2): Linear(in_features=256, out_features=32, bias=True)
    )
  )
)

  output_hypernetworks_mlps由4个MLP组成,在 predict_masks函数 中将 [ 1 , 256 ] {[1,256]} [1,256] 下采样至 [ 1 , 32 ] {[1,32]} [1,32] 。与TwoWayAttentionBlock中的MLP不同,其结构稍稍多一丢丢:

class MLP(nn.Module):
    def __init__(
            self,
            input_dim: int,   # 256
            hidden_dim: int,  # 256
            output_dim: int,  # 32
            num_layers: int,  # 3
            sigmoid_output: bool = False,  # False
    ) -> None:
        super().__init__()
        self.num_layers = num_layers  # 3
        h = [hidden_dim] * (num_layers - 1)  # [256,256]
        self.layers = nn.ModuleList(
            # [input_dim] + h: [256,256,256], h + [output_dim]:[256,256,32]
            nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])
        )
        self.sigmoid_output = sigmoid_output

    def forward(self, x):
        for i, layer in enumerate(self.layers):
        	# i<2经线性层后relu激活
            x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)  
        if self.sigmoid_output:
            x = F.sigmoid(x)
        return x

在这里插入图片描述


  ④ iou_prediction_head:

MLP(
  (layers): ModuleList(
    (0-1): 2 x Linear(in_features=256, out_features=256, bias=True)
    (2): Linear(in_features=256, out_features=4, bias=True)
  )
)

  iou_prediction_head用以实现iou预测,由1个MLP完成,其结构与output_hypernetworks_mlps中的MLP一样,只是最终将 [ 1 , 256 ] {[1,256]} [1,256] 映射至 [ 1 , 4 ] {[1,4]} [1,4]分别代表非multimask预测时的1个mask和multimask预测时的3个mask的iou。


(3)predict_masks函数

位置:【segment_anything/modeling/mask_decoder.py --> MaskDecoder类 --> predict_masks函数】
作用: 利用上述 t r a n s f o r m e r {transformer} transformer o u t p u t _ u p s c a l i n g {output\_upscaling} output_upscaling o u t p u t _ h y p e r n e t w o r k s _ m l p s {output\_hypernetworks\_mlps} output_hypernetworks_mlps i o u _ p r e d i c t i o n _ h e a d {iou\_prediction\_head} iou_prediction_head 四个模块,实现mask和iou预测
  
  此时此刻,首先来重温一下,传入predict_masks函数的参数分别是什么:

  ① image_embeddings:image encoder嵌入,大小为 [ 1 , 256 , 64 , 64 ] {[1, 256, 64, 64]} [1,256,64,64]
  ② image_pe:图像嵌入大小对应的位置编码,大小同为 [ 1 , 256 , 64 , 64 ] {[1, 256, 64, 64]} [1,256,64,64]
  ③ sparse_prompt_embeddings:prompt point和box嵌入,大小为 [ 1 , 3 , 256 ] {[1, 3, 256]} [1,3,256]
  ④ dense_prompt_embeddings:prompt mask嵌入,大小为 [ 1 , 256 , 64 , 64 ] {[1, 256, 64, 64]} [1,256,64,64]

def predict_masks(
        self,
        image_embeddings: torch.Tensor,  # [1, 256, 64, 64]
        image_pe: torch.Tensor,  # [1, 256, 64, 64]
        sparse_prompt_embeddings: torch.Tensor,  # [1, 3, 256]
        dense_prompt_embeddings: torch.Tensor,  # [1, 256, 64, 64]
) -> Tuple[torch.Tensor, torch.Tensor]:
    """Predicts masks. See 'forward' for more details."""
    # Concatenate output tokens
    # 拼接iou的token和mask的token: [1,256]+[4,256]->[5,256]
    output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
    output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)  # [1,5,256]
    # iou的token和mask的token + prompt point和box嵌入
    tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)  # [1,8,256]

    # Expand per-image data in batch direction to be per-mask
    src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)  # 按batch重复: [1,256,64,64]
    src = src + dense_prompt_embeddings  # [1,256,64,64]
    pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)  # 按batch重复: [1,256,64,64]
    b, c, h, w = src.shape  # 1,256,64,64

    # Run the transformer
    # src是image encoder嵌入和prompt mask嵌入
    # pos_src是图像嵌入大小对应的位置编码
    # tokens是iou的token和mask的token + prompt point和box嵌入
    hs, src = self.transformer(src, pos_src, tokens)  # hs:[1,8,256], src:[1,4096,256]
    iou_token_out = hs[:, 0, :]  # 第1个为iou的token输出[1,256]
    mask_tokens_out = hs[:, 1: (1 + self.num_mask_tokens), :]  # 随后4个为mask的token输出[4,256]

    # Upscale mask embeddings and predict masks using the mask tokens
    src = src.transpose(1, 2).view(b, c, h, w)   # reshape: [1,4096,256]-> [1,256,64,64]
    upscaled_embedding = self.output_upscaling(src)  # [1,32,256,256]
    hyper_in_list: List[torch.Tensor] = []
    for i in range(self.num_mask_tokens):
        hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
    hyper_in = torch.stack(hyper_in_list, dim=1)  # [1,4,32]
    b, c, h, w = upscaled_embedding.shape  # 1,32,256,256
    
    masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)  # [1,4,256,256]

    # Generate mask quality predictions
    iou_pred = self.iou_prediction_head(iou_token_out)  # [1,4]

    return masks, iou_pred

  由此可见,经TwoWayTransformer获得了iou_token_out和mask_tokens_out,iou_token_out由iou_prediction_head(1个MLP)实现iou预测,4个mask_tokens_out分别经过1个MLP所获得的映射拼接后,与经过output_upscaling上采样后的图像嵌入(包含image encoder嵌入和prompt mask嵌入)进行矩阵相乘,得到mask预测。


2. Mask Decoder结构绘制

(1)结构打印

MaskDecoder(
  (transformer): TwoWayTransformer(
    (layers): ModuleList(
      (0-1): 2 x TwoWayAttentionBlock(
        (self_attn): Attention(
          (q_proj): Linear(in_features=256, out_features=256, bias=True)
          (k_proj): Linear(in_features=256, out_features=256, bias=True)
          (v_proj): Linear(in_features=256, out_features=256, bias=True)
          (out_proj): Linear(in_features=256, out_features=256, bias=True)
        )
        (norm1): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
        (cross_attn_token_to_image): Attention(
          (q_proj): Linear(in_features=256, out_features=128, bias=True)
          (k_proj): Linear(in_features=256, out_features=128, bias=True)
          (v_proj): Linear(in_features=256, out_features=128, bias=True)
          (out_proj): Linear(in_features=128, out_features=256, bias=True)
        )
        (norm2): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
        (mlp): MLPBlock(
          (lin1): Linear(in_features=256, out_features=2048, bias=True)
          (lin2): Linear(in_features=2048, out_features=256, bias=True)
          (act): ReLU()
        )
        (norm3): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
        (norm4): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
        (cross_attn_image_to_token): Attention(
          (q_proj): Linear(in_features=256, out_features=128, bias=True)
          (k_proj): Linear(in_features=256, out_features=128, bias=True)
          (v_proj): Linear(in_features=256, out_features=128, bias=True)
          (out_proj): Linear(in_features=128, out_features=256, bias=True)
        )
      )
    )
    (final_attn_token_to_image): Attention(
      (q_proj): Linear(in_features=256, out_features=128, bias=True)
      (k_proj): Linear(in_features=256, out_features=128, bias=True)
      (v_proj): Linear(in_features=256, out_features=128, bias=True)
      (out_proj): Linear(in_features=128, out_features=256, bias=True)
    )
    (norm_final_attn): LayerNorm((256,), eps=1e-05, elementwise_affine=True)
  )
  (iou_token): Embedding(1, 256)
  (mask_tokens): Embedding(4, 256)
  (output_upscaling): Sequential(
    (0): ConvTranspose2d(256, 64, kernel_size=(2, 2), stride=(2, 2))
    (1): LayerNorm2d()
    (2): GELU(approximate='none')
    (3): ConvTranspose2d(64, 32, kernel_size=(2, 2), stride=(2, 2))
    (4): GELU(approximate='none')
  )
  (output_hypernetworks_mlps): ModuleList(
    (0-3): 4 x MLP(
      (layers): ModuleList(
        (0-1): 2 x Linear(in_features=256, out_features=256, bias=True)
        (2): Linear(in_features=256, out_features=32, bias=True)
      )
    )
  )
  (iou_prediction_head): MLP(
    (layers): ModuleList(
      (0-1): 2 x Linear(in_features=256, out_features=256, bias=True)
      (2): Linear(in_features=256, out_features=4, bias=True)
    )
  )
)

(2)结构绘制

  整体结构就是这样的啦,完结,撒花~
  
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/161847.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

LaTeX 数学公式常见问题及解决方案

本文汇总了博主在使用 LaTeX 写文档过程中遇到的所有数学公式常见问题及对应的 LaTeX 解决方案 持续更新... 目录 1. 连等式2. 公式重新开始编号2.1 图片/表格重新编号 1. 连等式 在数学公式推导过程中常常会遇到如 Figure 1 所示的连等式&#xff0c;一般需要保证等号或者不等…

消息积压了如何处理?

欢迎大家到我的博客阅读这篇文章。消息积压了如何处理&#xff1f; - 胤凯 (oyto.github.io)在系统中使用消息队列的时候&#xff0c;消息积压这个问题也经常遇到&#xff0c;并且这个问题还不太好解决。 消息积压的直接原因通常是&#xff0c;系统中的某个部分出现了性能问题…

经典ctf ping题目详解 青少年CTF-WEB-PingMe02

题目环境&#xff1a; 根据题目名称可知 这是一道CTF-WEB方向常考的知识点&#xff1a;ping地址 随便ping一个地址查看接受的数据包?ip0.0.0.0 有回显数据&#xff0c;尝试列出目录文件 堆叠命令使用’;作为命令之间的连接符&#xff0c;当上一个命令完成后&#xff0c;继续执…

Flink1.17 DataStream API

目录 一.执行环境&#xff08;Execution Environment&#xff09; 1.1 创建执行环境 1.2 执行模式 1.3 触发程序执行 二.源算子&#xff08;Source&#xff09; 2.1 从集合中读取数据 2.2 从文件读取数据 2.3 从 RabbitMQ 中读取数据 2.4 从数据生成器读取数据 2.5 …

【产品应用】一体化伺服电机在系留无人机中的应用

一体化伺服电机是一种将电机、驱动器、编码器结合在一起的伺服系统&#xff0c;具有高精度控制、快速响应和高效运行等优点。系留无人机则是一种通过绳索或链条与地面设施连接的无人机&#xff0c;能够实现长时间的稳定悬停和空中作业。 01.设备简介 电源线牵引装置&#xff1…

MATLAB Simulink和S7-1200PLC MOBUSTCP通信

MATLAB Simulink和SMART PLC OPC通信详细配置请查看下面文章链接: MATLAB和西门子SMART PLC OPC通信-CSDN博客文章浏览阅读749次,点赞26次,收藏2次。西门子S7-200SMART PLC OPC软件的下载和使用,请查看下面文章Smart 200PLC PC Access SMART OPC通信_基于pc access smart的…

人工智能-循环神经网络通过时间反向传播

到目前为止&#xff0c;我们已经反复提到像梯度爆炸或梯度消失&#xff0c; 以及需要对循环神经网络分离梯度。 例如&#xff0c;我们在序列上调用了detach函数。 为了能够快速构建模型并了解其工作原理&#xff0c; 上面所说的这些概念都没有得到充分的解释。 本节将更深入地探…

YOLO目标检测——烟雾检测数据集下载分享【含对应voc、coco和yolo三种格式标签】

实际项目应用&#xff1a;烟雾检测数据集可用于监控烟雾情况&#xff0c;实现火灾的早期预警。数据集说明&#xff1a;烟雾检测数据集&#xff0c;真实场景的高质量图片数据&#xff0c;数据场景丰富&#xff0c;含烟雾1个类别标签说明&#xff1a;使用lableimg标注软件标注&am…

Ant Design for Figma设计系统组件库 支持变量 非社区版

Ant Design for Figma 是基于 Ant Design 设计系统的 Figma 组件库&#xff0c;提供丰富的 UI 组件和交互功能&#xff0c;帮助设计师快速构建高质量的 Figma 设计稿。 Ant Design for Figma 继承了 Ant Design 的设计理念和风格&#xff0c;提供丰富的 UI 组件和交互功能&…

如何在el-tree懒加载并且包含下级的情况下进行数据回显-01

在项目中做需求&#xff0c;遇到一个比较棘手的问题&#xff0c;el-tree懒加载在包含下级的时候&#xff0c;需要做回显&#xff0c;将选中的数据再次勾选上&#xff0c;在处理这个需求的时候有两点是比较困难的&#xff1a; el-tree是懒加载的&#xff0c;包含下级需要一层一…

【10套模拟】【6】

关键字&#xff1a; 有向图入度、无向图度、一次深度优先、快速排序平均性能、折半查找、判断是否是二叉排序树、链式直接入插入排序

腾讯云服务器怎么买便宜?腾讯云服务器新人专享限时特惠购买链接

腾讯云作为国内领先的云计算服务提供商之一&#xff0c;为个人用户和企业用户提供了多种优惠活动。这些活动不仅能帮助用户节省成本&#xff0c;还能提升企业的效益。本文将介绍腾讯云的多重优惠活动&#xff0c;让用户能够以更优惠的价格购买和续费云服务器。 腾讯云双十一领…

HarmonyOS真机调试报错:INSTALL_PARSE_FAILED_USESDK_ERROR处理

1、 新建应用时选择与自己真机匹配的sdk版本 查看自己设备sdk版本 创建时先择匹配版本&#xff1a; 2、 根据报错提示连接打开处理方案 3、查询真机版本对应的compileSdkVersion 和 compatibleSdkVersion 提示3.1版本之后和3.1版本之前的不同命令&#xff08;此处为3.0版…

数学建模 | 灰色预测原理及python实现

目录 一、灰色预测的原理 二、灰色预测的应用及python实现 一、灰色预测的原理 灰色预测是以灰色模型为基础&#xff0c;灰色模型GM(n,h)是微分方程模型&#xff0c;可用于描述对象做长期、连续、动态的反应。其中&#xff0c;n代表微分方程式的阶数&#xff0c;h代表微分方…

课程设计(毕业设计)—基于机器学习(CNN+opencv+python)的车牌识别—(可远程调试)计算机专业课程设计(毕业设计)

基于机器学习(CNNopencvpython)的车牌识别 下载本文机器学习(CNNopencvpython)的车牌识别系统完整的代码和参考报告链接&#xff08;或者可以联系博主koukou(壹壹23七2五六98)&#xff0c;获取源码和报告&#xff09;https://download.csdn.net/download/shooter7/88548767此处…

使用Pandas进行时间重采样,充分挖掘数据价值

大家好&#xff0c;时间序列数据蕴含着很大价值&#xff0c;通过重采样技术可以提升原始数据的表现形式。本文将介绍数据重采样方法和工具&#xff0c;提升数据可视化技巧。 在进行时间数据可视化时&#xff0c;数据重采样是至关重要且非常有用的&#xff0c;它支持控制数据的…

合伙人如何承担合伙公司债务

合伙企业有不同的组织方式&#xff0c;包括普通合伙企业、特殊的普通合伙企业、有限合伙企业这三种&#xff0c;合伙人对于合伙企业的债务承担方式有以下几种情形&#xff1a; 1.普通合伙人合伙企业债务的承担 普通合伙企业由普通合伙人组成&#xff0c;合伙人对合伙企业债务承…

【开源】基于Vue和SpringBoot的数据可视化的智慧河南大屏

项目编号&#xff1a; S 059 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S059&#xff0c;文末获取源码。} 项目编号&#xff1a;S059&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块三、系统展示四、核心代码4.1 数据模块 …

Swagger示例

对于项目完成后不用写文档,好处还是蛮大的 不需要关注项目其他 只关注接口与实体类即可 SpringBoot项目 依赖 <!--Swagger依赖--> <dependency><groupId>io.springfox</groupId><artifactId>springfox-swagger2</artifactId><version…