下一代搜索引擎会什么?

        现在是北京时间2023年11月18日。聊一聊搜索。

        说到搜索,大家首先想到的肯定是谷歌,百度。我把这些定义成上一个时代的搜索引擎。ChatGPT已经火热了有一年的时间了,大家都认为Ai搜索是下一代的搜索。但是AI搜索,需要的是很大算力,需要很大存储空间。至今为止又有多少个公司能够真的去做AI搜索呢?普通的公司又能够做什么呢?

        ChatGPT是大模型,它的数据总是停留在历史的某个时间点上,目前来看,它对新事物的了解还是很慢的,并不能时时刻刻把新的内容加入到知识库中。未来在更强大的算力进步下,或许会实现。但是我觉得下一代的搜索仍然需要和上一代的搜索结合。这会是一个漫长的过渡期。很显然,大家也都是这么玩的。它叫做搜索增强。

        上一代传统搜索

        上一代的搜索引擎的关键是关键词匹配。这里还是以elasticsearch为例,关键词匹配,BM25相关性算法,来决定数据的召回。这种基于关键词的匹配技术,是存在很多弊端的,它的召回能力,效果也有限。大家更喜欢AI搜索这种模式,通常AI搜索给的答案,更接近问题本身。而在传统的搜索模式下,通常就是问一个问题,然后返回你几条数据,然后再在这几条数据中,人工获取答案。悲伤的是,这几条数据里边未必有我们的结果。

       传统搜索与大模型构造增强式搜索引擎

        最简单的玩法就是,把召回的结果,给大模型,然后由大模型总结整理一个答案。其实这个过程就是省去了使用者思考的过程。为使用者带来很大的便利性。这正是被更多人追捧的原因。最典型的就是bing的搜索。它就是这么玩的,这样以来,弥补了大模型的知识停留在历史的某个阶段的问题。

       传统搜索的未来

        除了上述的搜索增强,我觉得下个时代的搜索,还是会有很大变化空间的。有的公司在说神经搜索,有的人在说语义检索,还有人在说跨模态检索。总之,大家都期望搜索能够有更强大的能力。推荐基于深度学习的神经语义搜索 - 智源社区 看看这篇文章,详细了解神经搜索(NLP模型 )。

        其实上述的搜索目标,实现起来都是一种形式。大模型 + 向量,通过大模型将各种模态的数据,图片,文本,声音等等各种形式的内容,映射成向量。但是下个时代的到来,还有几个问题等待解决。第一个是算力问题,把文本或者图片,使用大模型转成向量,需要算力,这个过程是非常慢的。第二个是存储和检索问题,这些转完的向量如何存储,如何高效快速检索。因为通常文本内容,例如一篇文章,通常需要先进行分割,按照行或者按照段落做切分,然后再对切分后的内容使用模型转成向量。每个向量通常是一个512维度甚至更高维度的浮点型数组。这让原本的存储空间变得更大。所以存储是一个问题。除了存储的问题,在向量中做检索,通常是计算完成的。在海量数据中做检索已经很难了,在限量中做计算,需要的算力资源又是一个难题。我在一台128G内存96核心的服务器上使用elasticsearch做存储和检索,亿级数据的检索性能已经是一个比较大的问题了。在千万级向量中检索是毫秒级别。

        未来的搜索如何玩

        想要做起来很容易。选取适合自己的模型,可以在huggingFace上看一看。https://huggingface.co/models

        首先先拿文本来说,需要做文本嵌入,寻找text-vex的模型,这里推荐一个 可以看看。https://huggingface.co/moka-ai/m3e-base

        假如想做多模态搜索,又需要特定的模型。效果较好的例如Clip,https://huggingface.co/openai/clip-vit-base-patch32 

        然后把转好的向量使用向量库存起来。这里我是用的elasticsearch 8.X版本。因为我本来就是做es搜索的,对elasticsearch非常熟悉。其实也调研了非常多的向量数据库,在大规模数据下,es的读写性能都是非常出色的。至少单个节点去解决千万级别的向量数据的存储和检索还是很轻松的,优化万了以后,性能在毫秒级别。

        跑起来总是很容易。想要有更好的效果却是不容易的。对于选模型来说,是一个问题,而且要经过大量的测试对比各个模型的效果才行。并且非常可能面临着模型不符合自己的使用场景的问题,可能又要对模型进行微调。在huggingFace上,模型非常多,但是多数都是用英文语料训练的模型。往往不能够满足我们的需求。此外数据向量化的工程问题,又要去写挺多的代码,跑起来速度又不行,又需要进行调优。关于数据转向量工程化的内容,推荐一下Jina AI · GitHub。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/161286.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Wireshark TS | 应用传输缓慢问题

问题背景 沿用之前文章的开头说明,应用传输慢是一种比较常见的问题,慢在哪,为什么慢,有时候光从网络数据包分析方面很难回答的一清二楚,毕竟不同的技术方向专业性太强,全栈大佬只能仰望,而我们…

前端JS 使用input完成文件上传操作,并对文件进行类型转换

使用input实现文件上传 // 定义一个用于文件上传的按钮<input type"file" name"upload1" />// accept属性用于定义允许上传的文件类型&#xff0c; onchange用于绑定文件上传之后的相应函数<input type"file" name"upload2"…

【0基础学Java第十课】-- 认识String类

10. 认识String类 10.1 String类的重要性10.2 常用方法10.2.1 字符串构造10.2.2 String对象的比较10.2.3 字符串查找10.2.4 转化10.2.5 字符串替换10.2.6 字符串拆分10.2.7 字符串截取10.2.8 字符串的不可变性10.2.9 字符串修改 10.3 StringBuilder和StringBuffer10.3.1 String…

cadence virtuoso寄生参数提取问题

问题描述&#xff1a; 寄生参数提取的最后一步出现问题 calibre View generation encountered a fatal Error.Please consult the logfile for messages. 解决办法&#xff1a; sudo gedit /etc/profile&#xff08;如果失败就切换到超级用户root&#xff0c;使用su root命令…

装修干货|卧室常见3个软装搭配问题。福州中宅装饰,福州装修

引言 作为一名软装设计师&#xff0c;我对卧室的家具及软装布置颇有心得&#xff0c;现在就给你们带来卧室装修设计一些小技巧&#xff1a; 1. 床&#xff1b;衣柜&#xff1b;床头柜的摆放 床的摆放位置非常重要&#xff0c;一般要放在离窗户稍远的地方&#xff0c;避免直接…

CV计算机视觉每日开源代码Paper with code速览-2023.11.14

点击CV计算机视觉&#xff0c;关注更多CV干货 论文已打包&#xff0c;点击进入—>下载界面 点击加入—>CV计算机视觉交流群 1.【基础网络架构&#xff1a;Transformer】Aggregate, Decompose, and Fine-Tune: A Simple Yet Effective Factor-Tuning Method for Vision…

场景交互与场景漫游-路径漫游(7)

路径漫游 按照指定的路径进行漫游对一个演示是非常重要的。在osgViewer中&#xff0c;当第一次按下小写字母“z”时&#xff0c;开始记录动画路径;待动画录制完毕&#xff0c;按下大写字母“Z”&#xff0c;保存动画路径文件;使用osgViewer读取该动画路径文件时&#xff0c;会回…

招聘小程序源码 人才招聘网源码

招聘小程序源码 人才招聘网源码 求职招聘小程序源码系统是一种基于微信小程序的招聘平台&#xff0c;它可以帮助企业和求职者快速、方便地进行招聘和求职操作。 该系统通常包括以下功能模块&#xff1a; 用户注册和登录&#xff1a;用户可以通过微信小程序注册和登录&#…

世微 降压恒流驱动IC 景观亮化洗墙灯舞台灯汽车灯LED照明 AP5199S

1. 特性 支持高辉调光&#xff0c;调光比 平均电流工作模式 高效率&#xff1a;最高可达 95% 输出电流可调范围 60mA~12A 最大工作频率 1MHz 恒流精度≤3% 支持 PWM 封装&#xff1a;SOP8 2. 应用领域 景观亮化洗墙灯 舞台调光效果灯 汽车照明 3. 说明 AP5199S…

安全框架springSecurity+Jwt+Vue-1(vue环境搭建、动态路由、动态标签页)

一、安装vue环境&#xff0c;并新建Vue项目 ①&#xff1a;安装node.js 官网(https://nodejs.org/zh-cn/) 2.安装完成之后检查下版本信息&#xff1a; ②&#xff1a;创建vue项目 1.接下来&#xff0c;我们安装vue的环境 # 安装淘宝npm npm install -g cnpm --registryhttps:/…

Mybatis学习笔记-映射文件,标签,插件

目录 概述 mybatis做了什么 原生JDBC存在什么问题 MyBatis组成部分 Mybatis工作原理 mybatis和hibernate区别 使用mybatis&#xff08;springboot&#xff09; mybatis核心-sql映射文件 基础标签说明 1.namespace&#xff0c;命名空间 2.select&#xff0c;insert&a…

TensorFlow:GPU的使用

**引言** TensorFlow 是一个由 Google 开发的开源机器学习框架&#xff0c;它提供了丰富的工具和库&#xff0c;支持开发者构建和训练各种深度学习模型。而 GPU 作为一种高性能并行计算设备&#xff0c;能够显著提升训练深度学习模型的速度&#xff0c;从而加快模型迭代和优化…

CorelDRAW2024最新版本的图形设计软件

CorelDRAW2024是Corel公司推出的最新版本的图形设计软件。CorelDRAW是一款功能强大的矢量图形编辑工具&#xff0c;被广泛用于图形设计、插图、页面布局、照片编辑和网页设计等领域。 1. 新增的设计工具&#xff1a;CorelDRAW 2024引入了一些全新的设计工具&#xff0c;使用户能…

Web(5)Burpsuite之文件上传漏洞

1.搭建网站&#xff1a;为网站设置没有用过的端口号 2.中国蚁剑软件的使用 通过一句话木马获得权限 3.形象的比喻&#xff08;风筝&#xff09; 4.实验操作 参考文章&#xff1a; 文件上传之黑名单绕过_文件上传黑名单绕过_pigzlfa的博客-CSDN博客 后端验证特性 与 Window…

再也不用担心忘记密码了!如何在Windows 10或11中重置被遗忘的密码

​如果你忘记了Windows电脑的密码,不要惊慌。Windows 10和Windows 11都允许你重置忘记的密码,无论你使用的是Microsoft帐户还是本地帐户。你所要做的就是回答你的安全问题以重置密码。另一种选择是创建一个密码重置盘,你可以在任何U盘上进行。 除了使用密码之外,你还应该启…

【MySQL】索引与事务

作者主页&#xff1a;paper jie_博客 本文作者&#xff1a;大家好&#xff0c;我是paper jie&#xff0c;感谢你阅读本文&#xff0c;欢迎一建三连哦。 本文录入于《MySQL》专栏&#xff0c;本专栏是针对于大学生&#xff0c;编程小白精心打造的。笔者用重金(时间和精力)打造&a…

前端Vue拖拽功能

文章目录 安装使用 直接复制粘贴即可页面使用 直接复制粘贴即可小结&#xff08;带有效果图&#xff09; 安装 提示&#xff1a;首先您需要安装它&#xff0c;命令如下&#xff1a; npm install awe-dnd --save使用 直接复制粘贴即可 在mian.js文件中引入 //main.jsimport V…

【数据库】数据库连接池导致系统吞吐量上不去-复盘

在实际的开发中&#xff0c;我们会使用数据库连接池&#xff0c;但是如果不能很好的理解其中的含义&#xff0c;那么就可以出现生产事故。 HikariPool-1 - Connection is not available, request timed out after 30001ms.当系统的调用量上去&#xff0c;就出现大量这样的连接…

市级奖项+1,持安获「创业北京」创业创新大赛优秀奖!

2274个创业项目参赛 历经五个多月的激烈角逐 第六届“创业北京”创业创新大赛 终于圆满落下帷幕 持安科技在北京市总决赛中再创佳绩&#xff01; 荣获制造业赛道优秀奖 本次大赛由北京市人力资源和社会保障局、北京市发展和改革委员会等11家单位联合主办&#xff0c;以“创…

代码示例:基于JAX-WS和JAXB,其中http请求和响应的报文体都是xml数据

说明 基于JAX-WS编写了RESTful的web服务端点。 http请求和响应的报文体都是xml数据&#xff0c;服务端分别对应了用JAXB注解的请求和响应类。 只实现了服务端的代码示例 客户端使用了Postman 示例 要实现的目标&#xff1a;http请求和响应报文体的xml数据 http请求报文体的…