YOLOv5 配置C2模块构造新模型

🍨 本文为[🔗365天深度学习训练营学习记录博客
🍦 参考文章:365天深度学习训练营
🍖 原作者:[K同学啊]
🚀 文章来源:[K同学的学习圈子](https://www.yuque.com/mingtian-fkmxf/zxwb45)

目标:在YOLOv5s网络模型中,修改common.py、yolo.py、yolov5s.yaml文件,将C2模块插入第2层与第3层之间,且跑通YOLOv5s。

操作步骤:

1.在common.py文件中插入C2模块

class C2(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))

    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))

 

2.修改yolo.py文件,改动模型框架

def parse_model(d, ch):  # model_dict, input_channels(3)
    # Parse a YOLOv5 model.yaml dictionary
    LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")
    anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')
    if act:
        Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()
        LOGGER.info(f"{colorstr('activation:')} {act}")  # print
    na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors
    no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)

    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
        m = eval(m) if isinstance(m, str) else m  # eval strings
        for j, a in enumerate(args):
            with contextlib.suppress(NameError):
                args[j] = eval(a) if isinstance(a, str) else a  # eval strings

        n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain
        if m in {
                Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
                BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:
            c1, c2 = ch[f], args[0]
            if c2 != no:  # if not output
                c2 = make_divisible(c2 * gw, 8)

            args = [c1, c2, *args[1:]]
            if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}:
                args.insert(2, n)  # number of repeats
                n = 1
        elif m is nn.BatchNorm2d:
            args = [ch[f]]
        elif m is Concat:
            c2 = sum(ch[x] for x in f)
        # TODO: channel, gw, gd
        elif m in {Detect, Segment}:
            args.append([ch[x] for x in f])
            if isinstance(args[1], int):  # number of anchors
                args[1] = [list(range(args[1] * 2))] * len(f)
            if m is Segment:
                args[3] = make_divisible(args[3] * gw, 8)
        elif m is Contract:
            c2 = ch[f] * args[0] ** 2
        elif m is Expand:
            c2 = ch[f] // args[0] ** 2
        else:
            c2 = ch[f]

        m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
        t = str(m)[8:-2].replace('__main__.', '')  # module type
        np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type, m_.np = i, f, t, np  # attach index, 'from' index, type, number params
        LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # print
        save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        ch.append(c2)
    return nn.Sequential(*layers), sorted(save)

函数用于将模型的模块拼接起来,搭建完成的网络模型。后续如果需要动模型框架的话,需要对这个函数做相应的改动。

修改前:

修改后:

 3.yolov5s.yaml文件中加入C2层

4.命令窗运行

python train.py --img 900 --batch 2 --epoch 100 --data D:/yolov5-master/data/ab.yaml --cfg D:/yolov5-master/models/yolov5s.yaml --weights yolov5s.pt

运行结果: 

D:\yolov5-master>python train.py --img 900 --batch 2 --epoch 100 --data D:/yolov5-master/data/ab.yaml --cfg D:/yolov5-master/models/yolov5s.yaml --weights yolov5s.pt
train: weights=yolov5s.pt, cfg=D:/yolov5-master/models/yolov5s.yaml, data=D:/yolov5-master/data/ab.yaml, hyp=data\hyps\hyp.scratch-low.yaml, epochs=100, batch_size=2, imgsz=900, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=None, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs\train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest
github: skipping check (not a git repository), for updates see https://github.com/ultralytics/yolov5
YOLOv5  2023-10-15 Python-3.10.7 torch-2.0.1+cpu CPU

hyperparameters: lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0
Comet: run 'pip install comet_ml' to automatically track and visualize YOLOv5  runs in Comet
TensorBoard: Start with 'tensorboard --logdir runs\train', view at http://localhost:6006/
Overriding model.yaml nc=80 with nc=4

                 from  n    params  module                                  arguments
Traceback (most recent call last):
  File "D:\yolov5-master\train.py", line 647, in <module>
    main(opt)
  File "D:\yolov5-master\train.py", line 536, in main
    train(opt.hyp, opt, device, callbacks)
  File "D:\yolov5-master\train.py", line 130, in train
    model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
  File "D:\yolov5-master\models\yolo.py", line 185, in __init__
    self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])  # model, savelist
  File "D:\yolov5-master\models\yolo.py", line 319, in parse_model
    BottleneckCSP, C2, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:
NameError: name 'C2' is not defined. Did you mean: 'c2'?

D:\yolov5-master>python train.py --img 900 --batch 2 --epoch 100 --data D:/yolov5-master/data/ab.yaml --cfg D:/yolov5-master/models/yolov5s.yaml --weights yolov5s.pt
train: weights=yolov5s.pt, cfg=D:/yolov5-master/models/yolov5s.yaml, data=D:/yolov5-master/data/ab.yaml, hyp=data\hyps\hyp.scratch-low.yaml, epochs=100, batch_size=2, imgsz=900, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=None, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs\train, name=exp, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest
github: skipping check (not a git repository), for updates see https://github.com/ultralytics/yolov5
YOLOv5  2023-10-15 Python-3.10.7 torch-2.0.1+cpu CPU

hyperparameters: lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0
Comet: run 'pip install comet_ml' to automatically track and visualize YOLOv5  runs in Comet
TensorBoard: Start with 'tensorboard --logdir runs\train', view at http://localhost:6006/
Overriding model.yaml nc=80 with nc=4

                 from  n    params  module                                  arguments
  0                -1  1      3520  models.common.Conv                      [3, 32, 6, 2, 2]
  1                -1  1     18560  models.common.Conv                      [32, 64, 3, 2]
  2                -1  1     18816  models.common.C3                        [64, 64, 1]
  3                -1  1     18816  models.common.C2                        [64, 64, 1]
  4                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]
  5                -1  2    115712  models.common.C3                        [128, 128, 2]
  6                -1  1    295424  models.common.Conv                      [128, 256, 3, 2]
  7                -1  3    625152  models.common.C3                        [256, 256, 3]
  8                -1  1   1180672  models.common.Conv                      [256, 512, 3, 2]
  9                -1  1   1182720  models.common.C3                        [512, 512, 1]
 10                -1  1    656896  models.common.SPPF                      [512, 512, 5]
 11                -1  1    131584  models.common.Conv                      [512, 256, 1, 1]
 12                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']
 13           [-1, 6]  1         0  models.common.Concat                    [1]
 14                -1  1    361984  models.common.C3                        [512, 256, 1, False]
 15                -1  1     33024  models.common.Conv                      [256, 128, 1, 1]
 16                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']
 17           [-1, 4]  1         0  models.common.Concat                    [1]
 18                -1  1     90880  models.common.C3                        [256, 128, 1, False]
 19                -1  1    147712  models.common.Conv                      [128, 128, 3, 2]
 20          [-1, 14]  1         0  models.common.Concat                    [1]
 21                -1  1    329216  models.common.C3                        [384, 256, 1, False]
 22                -1  1    590336  models.common.Conv                      [256, 256, 3, 2]
 23          [-1, 10]  1         0  models.common.Concat                    [1]
 24                -1  1   1313792  models.common.C3                        [768, 512, 1, False]
 25      [17, 20, 23]  1     38097  models.yolo.Detect                      [4, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [256, 384, 768]]
YOLOv5s summary: 232 layers, 7226897 parameters, 7226897 gradients, 17.2 GFLOPs

Transferred 49/379 items from yolov5s.pt
WARNING  --img-size 900 must be multiple of max stride 32, updating to 928
optimizer: SGD(lr=0.01) with parameter groups 62 weight(decay=0.0), 65 weight(decay=0.0005), 65 bias
train: Scanning D:\yolov5-master\Y2\train... 1 images, 0 backgrounds, 159 corrupt: 100%|██████████| 160/160 [00:13<00:0
train: WARNING   D:\yolov5-master\Y2\images\fruit1.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit1.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit10.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit10.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit100.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit100.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit102.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit102.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit103.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit103.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit104.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit104.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit106.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit106.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit108.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit108.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit109.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit109.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit11.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit11.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit110.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit110.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit111.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit111.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit113.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit113.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit114.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit114.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit115.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit115.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit116.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit116.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit117.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit117.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit118.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit118.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit119.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit119.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit12.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit12.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit120.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit120.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit121.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit121.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit122.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit122.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit123.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit123.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit124.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit124.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit125.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit125.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit127.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit127.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit129.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit129.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit13.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit13.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit130.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit130.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit131.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit131.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit132.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit132.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit133.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit133.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit134.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit134.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit135.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit135.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit136.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit136.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit138.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit138.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit14.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit14.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit142.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit142.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit143.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit143.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit144.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit144.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit145.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit145.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit147.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit147.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit148.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit148.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit149.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit149.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit15.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit15.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit151.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit151.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit152.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit152.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit155.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit155.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit156.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit156.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit157.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit157.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit158.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit158.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit159.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit159.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit16.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit16.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit161.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit161.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit162.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit162.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit163.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit163.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit164.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit164.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit165.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit165.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit167.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit167.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit168.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit168.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit169.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit169.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit17.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit17.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit170.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit170.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit171.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit171.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit172.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit172.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit173.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit173.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit174.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit174.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit175.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit175.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit176.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit176.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit177.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit177.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit178.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit178.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit179.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit179.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit18.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit18.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit180.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit180.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit181.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit181.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit182.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit182.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit183.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit183.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit184.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit184.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit185.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit185.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit186.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit186.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit187.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit187.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit188.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit188.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit19.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit19.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit196.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit196.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit197.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit197.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit198.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit198.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit199.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit199.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit2.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit2.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit200.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit200.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit202.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit202.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit208.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit208.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit209.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit209.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit211.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit211.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit22.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit22.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit23.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit23.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit25.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit25.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit26.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit26.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit27.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit27.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit28.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit28.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit29.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit29.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit3.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit3.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit30.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit30.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit31.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit31.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit33.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit33.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit34.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit34.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit35.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit35.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit36.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit36.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit38.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit38.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit39.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit39.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit4.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit4.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit40.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit40.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit43.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit43.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit44.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit44.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit45.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit45.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit46.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit46.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit49.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit49.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit50.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit50.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit51.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit51.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit52.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit52.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit53.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit53.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit54.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit54.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit55.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit55.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit57.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit57.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit59.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit59.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit6.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit6.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit60.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit60.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit61.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit61.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit62.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit62.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit63.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit63.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit65.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit65.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit66.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit66.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit68.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit68.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit69.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit69.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit7.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit7.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit70.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit70.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit71.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit71.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit73.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit73.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit74.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit74.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit75.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit75.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit77.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit77.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit78.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit78.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit79.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit79.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit80.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit80.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit81.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit81.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit82.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit82.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit83.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit83.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit85.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit85.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit86.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit86.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit87.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit87.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit88.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit88.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit89.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit89.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit90.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit90.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit91.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit91.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit94.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit94.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit95.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit95.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit97.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit97.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit98.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit98.png'
train: WARNING   D:\yolov5-master\Y2\images\fruit99.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit99.png'
train: WARNING  Cache directory D:\yolov5-master\Y2 is not writeable: [WinError 183] : 'D:\\yolov5-master\\Y2\\train.cache.npy' -> 'D:\\yolov5-master\\Y2\\train.cache'
val: Scanning D:\yolov5-master\Y2\val.cache... 1 images, 0 backgrounds, 19 corrupt: 100%|██████████| 20/20 [00:00<?, ?i
val: WARNING   D:\yolov5-master\Y2\images\fruit107.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit107.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit112.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit112.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit139.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit139.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit140.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit140.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit141.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit141.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit146.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit146.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit20.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit20.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit210.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit210.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit24.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit24.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit32.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit32.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit41.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit41.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit47.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit47.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit48.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit48.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit5.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit5.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit64.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit64.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit8.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit8.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit84.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit84.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit92.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit92.png'
val: WARNING   D:\yolov5-master\Y2\images\fruit96.png: ignoring corrupt image/label: [Errno 22] Invalid argument: ' D:\\yolov5-master\\Y2\\images\\fruit96.png'

AutoAnchor: 4.33 anchors/target, 1.000 Best Possible Recall (BPR). Current anchors are a good fit to dataset
Plotting labels to runs\train\exp12\labels.jpg...
Image sizes 928 train, 928 val
Using 0 dataloader workers
Logging results to runs\train\exp12
Starting training for 100 epochs...

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       0/99         0G     0.1123    0.06848    0.04815          7        928:   0%|          | 0/1 [00:01<?, ?it/s]WARNING  TensorBoard graph visualization failure Sizes of tensors must match except in dimension 1. Expected size 58 but got size 57 for tensor number 1 in the list.
       0/99         0G     0.1123    0.06848    0.04815          7        928: 100%|██████████| 1/1 [00:02<00:00,  2.97
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3    0.00439      0.333     0.0474     0.0121

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       1/99         0G     0.1105    0.06846    0.04628          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.51
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3    0.00926      0.333     0.0332     0.0154

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       2/99         0G     0.1139    0.05816    0.04684          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.45
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3    0.00926      0.333     0.0332     0.0154

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       3/99         0G    0.07328    0.05078    0.03088          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.51
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3     0.0119      0.333     0.0123    0.00369

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       4/99         0G    0.06693    0.05186    0.03044          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.47
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3     0.0119      0.333     0.0123    0.00369

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       5/99         0G     0.1102    0.09702    0.04647         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.44
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3     0.0119      0.333     0.0123    0.00369

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       6/99         0G     0.1147    0.07053    0.04376          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.48
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       7/99         0G    0.06716    0.05544    0.02962          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.43
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       8/99         0G     0.1161    0.05993    0.04253          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.44
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
       9/99         0G     0.1187    0.05657     0.0432          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.45
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      10/99         0G     0.1163    0.09305    0.04868         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.50
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      11/99         0G    0.07575    0.04969    0.03171          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.42
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      12/99         0G     0.1092    0.09129      0.045         10        928: 100%|██████████| 1/1 [00:01<00:00,  1.43
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      13/99         0G     0.1003    0.05476    0.04605          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.44
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      14/99         0G    0.07006    0.05166    0.03166          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.43
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      15/99         0G     0.1156    0.05315    0.04495          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.43
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      16/99         0G     0.1143     0.0559      0.045          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.48
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      17/99         0G    0.08845     0.0449    0.02645          2        928: 100%|██████████| 1/1 [00:01<00:00,  1.43
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      18/99         0G     0.1189    0.05909    0.04975          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.44
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      19/99         0G     0.1113    0.05739    0.04547          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.46
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      20/99         0G      0.117    0.07437    0.04842         10        928: 100%|██████████| 1/1 [00:01<00:00,  1.45
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      21/99         0G      0.109    0.06155     0.0505          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.44
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      22/99         0G     0.1073     0.1035    0.04515         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.46
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      23/99         0G     0.1257     0.0527    0.04264          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.45
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      24/99         0G     0.1036     0.0745    0.04745          7        928: 100%|██████████| 1/1 [00:01<00:00,  1.50
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      25/99         0G     0.1112     0.1054    0.04881         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.45
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      26/99         0G     0.1053    0.08021    0.04656          8        928: 100%|██████████| 1/1 [00:01<00:00,  1.44
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      27/99         0G     0.1208    0.05651    0.04577          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.45
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      28/99         0G    0.07633     0.0537    0.03023          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.46
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      29/99         0G     0.1162    0.05969    0.04597          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.44
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      30/99         0G     0.1117    0.07415    0.04961          8        928: 100%|██████████| 1/1 [00:01<00:00,  1.45
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      31/99         0G     0.1132    0.06359    0.04704          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.46
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      32/99         0G    0.08006    0.05026    0.02591          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.45
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      33/99         0G     0.1117      0.104    0.04704         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.45
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      34/99         0G     0.1135    0.06241    0.04401          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.45
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      35/99         0G     0.1117    0.07476    0.04524          7        928: 100%|██████████| 1/1 [00:01<00:00,  1.45
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      36/99         0G     0.1134    0.09759    0.04479         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.51
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      37/99         0G     0.1184    0.06637    0.04515          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.45
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      38/99         0G    0.08484    0.04526    0.02921          2        928: 100%|██████████| 1/1 [00:01<00:00,  1.50
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      39/99         0G    0.09749     0.0813    0.04582          8        928: 100%|██████████| 1/1 [00:01<00:00,  1.57
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      40/99         0G     0.1117    0.07415      0.046          7        928: 100%|██████████| 1/1 [00:01<00:00,  1.63
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      41/99         0G     0.1117    0.07245    0.04489          7        928: 100%|██████████| 1/1 [00:01<00:00,  1.68
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      42/99         0G     0.1094    0.05986    0.04839          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.71
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      43/99         0G     0.1097     0.0697    0.04865          7        928: 100%|██████████| 1/1 [00:01<00:00,  1.65
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      44/99         0G     0.1108    0.09187    0.04328         10        928: 100%|██████████| 1/1 [00:01<00:00,  1.57
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      45/99         0G     0.1126    0.05993      0.047          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.52
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      46/99         0G     0.0688    0.05024    0.03075          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.53
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      47/99         0G      0.112    0.09688    0.04424         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.51
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      48/99         0G     0.1166    0.06569    0.04565          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.53
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      49/99         0G     0.1118    0.05801    0.04417          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.51
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      50/99         0G     0.1097     0.1048    0.04665         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.51
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      51/99         0G     0.1218    0.06085    0.04525          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.83
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      52/99         0G     0.1056    0.08698    0.04532          9        928: 100%|██████████| 1/1 [00:01<00:00,  1.66
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      53/99         0G    0.06761    0.05242    0.03217          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.68
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      54/99         0G     0.1044     0.1022     0.0441         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.60
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      55/99         0G     0.1269    0.05652    0.04289          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.87
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      56/99         0G     0.1112     0.0772    0.04683          8        928: 100%|██████████| 1/1 [00:01<00:00,  1.86
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      57/99         0G     0.1144    0.05499    0.04611          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.78
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      58/99         0G    0.07043     0.0666     0.0297          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.71
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      59/99         0G     0.1092    0.09867    0.04592         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.72
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      60/99         0G       0.12    0.05285    0.04611          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.71
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      61/99         0G     0.0728    0.05391    0.02953          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.75
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      62/99         0G     0.1164    0.05441    0.04357          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.91
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      63/99         0G     0.1123     0.1039     0.0476         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.82
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      64/99         0G     0.1089      0.064    0.04559          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.69
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      65/99         0G     0.1152    0.07665    0.04802          8        928: 100%|██████████| 1/1 [00:01<00:00,  1.64
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      66/99         0G     0.1186    0.06205     0.0432          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.74
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      67/99         0G      0.114    0.06644    0.04486          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.88
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      68/99         0G     0.1118    0.05814    0.04571          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.89
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      69/99         0G      0.106     0.0762    0.04522          8        928: 100%|██████████| 1/1 [00:01<00:00,  1.88
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      70/99         0G     0.1068    0.06769      0.048          7        928: 100%|██████████| 1/1 [00:01<00:00,  1.71
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      71/99         0G       0.11     0.1035    0.04768         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.64
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      72/99         0G     0.1071    0.05783    0.04588          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.71
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      73/99         0G      0.107    0.06332    0.04598          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.72
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      74/99         0G     0.1127    0.09514    0.04832         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.71
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      75/99         0G    0.07471    0.05085    0.03363          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.62
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      76/99         0G    0.07295    0.05077    0.03028          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.68
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      77/99         0G     0.1221     0.0522     0.0502          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.73
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      78/99         0G     0.1159    0.05984    0.04441          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.86
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      79/99         0G     0.0764    0.05256    0.03172          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.81
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      80/99         0G    0.07563    0.05452    0.03032          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.73
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      81/99         0G    0.06719     0.0531    0.02945          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.67
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      82/99         0G     0.1076    0.06686    0.04691          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.68
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      83/99         0G     0.1112    0.07135    0.04413          7        928: 100%|██████████| 1/1 [00:01<00:00,  1.70
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      84/99         0G     0.1116    0.09399    0.04413         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.63
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      85/99         0G     0.1116    0.06021    0.04635          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.67
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      86/99         0G     0.1096     0.1032    0.04634         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.66
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      87/99         0G     0.1143    0.05941    0.04396          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.66
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      88/99         0G     0.1161     0.0518    0.04673          3        928: 100%|██████████| 1/1 [00:01<00:00,  1.66
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      89/99         0G     0.1106    0.05528    0.04363          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.65
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      90/99         0G     0.1238    0.05427    0.04809          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.66
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      91/99         0G     0.1104    0.06561    0.04492          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.67
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      92/99         0G     0.1137    0.08532    0.04445         10        928: 100%|██████████| 1/1 [00:01<00:00,  1.70
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      93/99         0G     0.1125    0.07016    0.04628          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.65
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      94/99         0G     0.1116    0.05724    0.04418          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.63
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      95/99         0G     0.1124     0.1026    0.04744         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.77
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      96/99         0G      0.117    0.05599    0.04682          5        928: 100%|██████████| 1/1 [00:01<00:00,  1.71
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      97/99         0G      0.124     0.0617    0.04387          6        928: 100%|██████████| 1/1 [00:01<00:00,  1.75
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      98/99         0G     0.1126     0.1009    0.04399         12        928: 100%|██████████| 1/1 [00:01<00:00,  1.64
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

      Epoch    GPU_mem   box_loss   obj_loss   cls_loss  Instances       Size
      99/99         0G    0.06937    0.05515    0.03017          4        928: 100%|██████████| 1/1 [00:01<00:00,  1.68
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3          0          0          0          0

100 epochs completed in 0.067 hours.
Optimizer stripped from runs\train\exp12\weights\last.pt, 15.0MB
Optimizer stripped from runs\train\exp12\weights\best.pt, 15.0MB

Validating runs\train\exp12\weights\best.pt...
Fusing layers...
YOLOv5s summary: 170 layers, 7217201 parameters, 0 gradients, 17.0 GFLOPs
                 Class     Images  Instances          P          R      mAP50   mAP50-95: 100%|██████████| 1/1 [00:00<0
                   all          1          3     0.0115      0.333     0.0369      0.012
                banana          1          1          0          0          0          0
           snake fruit          1          1          0          0          0          0
             pineapple          1          1     0.0345          1      0.111     0.0359
Results saved to runs\train\exp12

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/159031.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

html使用天地图写一个地图列表

一、效果图&#xff1a; 点击左侧地址列表&#xff0c;右侧地图跟着改变。 二、代码实现&#xff1a; 一进入页面时&#xff0c;通过body调用onLoad"onLoad()"函数&#xff0c;确保地图正常显示。 <body onLoad"onLoad()"><!--左侧代码-->…

电磁场与电磁波part2--电磁场的基本规律

1、电流连续性方程的微分形式 表明时变电流场是有散场&#xff0c;电流线是由电荷随时间变化的地方发出或终止的&#xff0c;在正电荷随时间减小的地方就会发出电流线&#xff0c;在正电荷随时间增加的地方就会终止电流线。 2、任何一个标量函数的梯度再求旋度时恒等于零&#…

【uniapp】华为APP真机运行(novas系列)

依华为手机为例&#xff0c;首先数据线连接电脑&#xff0c;然后在手机上做如下操作&#xff1a; 1&#xff09;打开设置 2&#xff09;设置——关于手机 3&#xff09;连续点击软件版本号&#xff0c;此时手机处于开发者模式 4) 回到设置——系统和更新 5&#xff09;点击开…

全球温度数据下载

1.全球年平均温度下载https://www.ncei.noaa.gov/data/global-summary-of-the-year/archive/ 2.全球月平均气温下载https://www.ncei.noaa.gov/data/global-summary-of-the-month/archive/ 3.全球日平均气温下载https://www.ncei.noaa.gov/data/global-summary-of-the-day/ar…

使用Sqoop命令从Oracle同步数据到Hive,修复数据乱码 %0A的问题

一、创建一张Hive测试表 create table test_oracle_hive(id_code string,phone_code string,status string,create_time string ) partitioned by(partition_date string) ROW FORMAT DELIMITED FIELDS TERMINATED BY ,; 创建分区字段partition_date&#xff0c…

【Effective C++ 笔记】(四)设计与声明

【四】设计与声明 条款18 &#xff1a; 让接口容易被正确使用&#xff0c;不易被误用 Item 18: 让接口容易被正确使用&#xff0c;不易被误用 Make interfaces easy to use correctly and hard to use incorrectly. “让接口容易被正确使用&#xff0c;不易被误用”&#xff0…

C语言日记——调试篇

一、调试调试的基本步骤 发现程序错误的存在 以隔离、消除等方式对错误进行定位 确定错误产生的原因 提出纠正错误的解决办法 对程序错误予以改正&#xff0c;重新测试 二、Debug和Release Debug通常称为调试版本&#xff0c;它包含调试信息&#xff0c;并且不作任何优化…

数据结构C语言之线性表

发现更多计算机知识&#xff0c;欢迎访问Cr不是铬的个人网站 1.1线性表的定义 线性表是具有相同特性的数据元素的一个有限序列 对应的逻辑结构图形&#xff1a; 从线性表的定义中可以看出它的特性&#xff1a; &#xff08;1&#xff09;有穷性&#xff1a;一个线性表中的元…

线程状态及线程之间通信

线程状态概述 当线程被创建并启动以后&#xff0c;它既不是一启动就进入了执行状态&#xff0c;也不是一直处于执行状态。在线程的生命周期中&#xff0c; 有几种状态呢&#xff1f;在 java.lang.Thread.State 这个枚举中给出了六种线程状态&#xff1a; 线程状态 导致状态发生…

Objectarx 使用libcurl请求WebApi

因为开发cad需要请求服务器的数据&#xff0c;再次之前我在服务器搭设了webapi用户传递数据&#xff0c;所以安装了libcurl在objectarx中使用数据。 Open VS2012 x64 Native Tools Command Prompt补充地址&#xff1a; 我在此将相关的引用配置图片&#xff0c;cad里面的应用和…

Linux中的进程等待(超详细)

Linux中的进程等待 1. 进程等待必要性2. 进程等待的方法2.1 wait方法2.2 waitpid方法 3. 获取子进程status4. 具体代码实现 1. 进程等待必要性 我们知道&#xff0c;子进程退出&#xff0c;父进程如果不管不顾&#xff0c;就可能造成‘僵尸进程’的问题&#xff0c;进而造成内…

UE的PlayerController方法Convert Mouse Location To World Space

先上图&#xff1a; Convert Mouse Location To World这是PlayerController对象中很重要的方法。 需要说明的是两个输出值。 第一个是World Location&#xff0c;这是个基于世界空间的位置值&#xff0c;一开始我以为这个值和当前摄像机的位置是重叠的&#xff0c;但是打印出来…

kaggle项目部署

目录 流程详细步骤注意事项 流程 修改模块地址打包项目上传到kaggle Datasets创建code文件&#xff0c;导入数据与项目粘贴train.py文件&#xff0c;调整超参数&#xff0c;选择GPUsave version&#xff0c;后台训练查看训练结果 详细步骤 打开kaggle网站&#xff0c;点击da…

号卡分销管理系统搭建

随着移动互联网的发展&#xff0c;各种手机应用层出不穷&#xff0c;其中包括了很多用于企业管理的软件。号卡系统分销管理软件就是其中的一种。它是一种基于移动互联网的企业管理软件&#xff0c;能够帮助企业进行号卡的分销管理&#xff0c;从而提高企业的效率和竞争力。 …

抖音快手判断性别、年龄自动关注脚本,按键精灵开源代码!

这个是支持抖音和快手两个平台的&#xff0c;可以进入对方主页然后判断对方年龄和性别&#xff0c;符合条件的关注&#xff0c;不符合条件的跳过下一个ID&#xff0c;所以比较精准&#xff0c;当然你可以二次开发加入更多的平台&#xff0c;小红书之类的&#xff0c;仅供学习&a…

Linux(3):Linux 的文件权限与目录配置

把具有相同的账户放入到一个组里面&#xff0c;这个组就是这两个账户的 群组 。在访问资源&#xff08;操作系统中计算机的资源&#xff09;时&#xff0c;可以让这个组里面的所有用户都具有访问权限。 每个账号都可以有多个群组的支持。 在我们Liux 系统当中&#xff0c;默认的…

kibana8.10.4简单使用

1.创建discovery里的日志项目 点击stack management 选择kibana里的数据视图&#xff0c;右上角创建数据视图&#xff0c;输入名称。索引范围。例子 example-* ,匹配以example-开头的所有index。 然后点击 保存数据视图到kibana&#xff0c; 2.Kibana多用户创建及角色权限控…

macOS下如何使用Flask进行开发

&#x1f468;&#x1f3fb;‍&#x1f4bb; 热爱摄影的程序员 &#x1f468;&#x1f3fb;‍&#x1f3a8; 喜欢编码的设计师 &#x1f9d5;&#x1f3fb; 擅长设计的剪辑师 &#x1f9d1;&#x1f3fb;‍&#x1f3eb; 一位高冷无情的编码爱好者 大家好&#xff0c;我是全栈工…

力扣栈与队列--总结篇

前言 八道题&#xff0c;没想到用了五天。当然需要时间的沉淀&#xff0c;但是一天不能啥也不干啊&#xff01; 内容 首先得熟悉特点和基本操作。 栈与队列在计算机底层中非常重要&#xff0c;这就是为什么要学好数据结构。 可视化的软件例如APP、网站之类的&#xff0c;都…

Word中NoteExpress不显示的问题

首先确认我们以及安装了word插件 我们打开word却没有。此时我们打开&#xff1a;文件->选项->加载项 我们发现被禁用了 选择【禁用项目】&#xff08;如果没有&#xff0c;试一试【缓慢且禁用的加载项】&#xff09;&#xff0c;点击转到 选择启用 如果没有禁用且没有出…