kubernetes--数据存储

目录

一、数据存储引言:

二、基础存储卷:

 1. emptyDir存储卷:

 2. hostPath存储卷:

 3. nfs共享存储卷:

  3.1 配置nfs:

  3.2 master节点编写yaml文件:

 4. 总结:

三、PVC和PV:

 1. PV 的状态有以下 4 种:

 2. PV从创建到销毁的具体流程如下:

 3. pv定义的规格:

 4. PVC定义的规格:

 5. NFS使用静态PV和PVC:

  5.1. 配置nfs存储:

  5.2 定义PV:

  5.3 定义PVC:

​编辑

  5.4 测试访问:

 6. 动态 PV 创建:

 1. 动态pv的请求过程:

 2. 创建动态PV的过程:

 7. 实现 NFS 的动态 PV 创建:

  1. 在nfs节点上安装nfs,并配置nfs服务:

 2. 创建 Service Account:

 3. 使用 Deployment 来创建 NFS Provisioner:

 4. 创建 StorageClass:

 5. 创建PVC和Pod:

 6. 测试:


一、数据存储引言:

容器磁盘上的文件的生命周期是短暂的,这就使得在容器中运行重要应用时会出现一些问题。首先,当容器崩溃时,kubelet 会重启它,但是容器中的文件将丢失——容器以干净的状态(镜像最初的状态)重新启动。其次,在Pod中同时运行多个容器时,这些容器之间通常需要共享文件。Kubernetes 中的Volume抽象就很好的解决了这些问题。Pod中的容器通过Pause容器共享Volume。

二、基础存储卷:

 1. emptyDir存储卷:

当Pod被分配给节点时,首先创建emptyDir卷,并且只要该Pod在该节点上运行,该卷就会存在。正如卷的名字所述,它最初是空的。Pod 中的容器可以读取和写入emptyDir卷中的相同文件,尽管该卷可以挂载到每个容器中的相同或不同路径上。当出于任何原因从节点中删除 Pod 时,emptyDir中的数据将被永久删除。

mkdir /opt/volumes
cd /opt/volumes

vim pod-emptydir.yaml 
apiVersion: v1
kind: Pod
metadata:
  name: pod-emptydir
  namespace: default
  labels:
    app: myapp
    tier: frontend
spec:
  containers:
  - name: myapp
    image: ikubernetes/myapp:v1
    imagePullPolicy: IfNotPresent
    ports:
    - name: http
      containerPort: 80
	#定义容器挂载内容
    volumeMounts:
	#使用的存储卷名称,如果跟下面volume字段name值相同,则表示使用volume的这个存储卷
    - name: html
	  #挂载至容器中哪个目录
      mountPath: /usr/share/nginx/html/
  - name: busybox
    image: busybox:latest
    imagePullPolicy: IfNotPresent
    volumeMounts:
    - name: html
	  #在容器内定义挂载存储名称和挂载路径
      mountPath: /data/
    command: ['/bin/sh','-c','while true;do echo $(date) >> /data/index.html;sleep 2;done']
  #定义存储卷
  volumes:
  #定义存储卷名称  
  - name: html
    #定义存储卷类型
    emptyDir: {}

##定义存储卷名为html,两个容器同时挂载存储卷,共享存储空间
	
kubectl apply -f pod-emptydir.yaml

kubectl get pods -o wide

 2. hostPath存储卷:

hostPath卷将 node 节点的文件系统中的文件或目录挂载到集群中。
hostPath可以实现持久存储,但是在node节点故障时,也会导致数据的丢失。

apiVersion: v1
kind: Pod
metadata:
  name: pod-hostpath
  namespace: default
spec:
  containers:
  - name: nginx
    image: nginx
    volumeMounts:
    - name: html
      mountPath: /usr/share/nginx/html
      readOnly: false
  volumes:
  - name: html
    hostPath:
      path: /data/pod/volume1
      type: Directory

 3. nfs共享存储卷:

  3.1 配置nfs:

//在新机器节点上安装nfs,并配置nfs服务
mkdir /data/volumes -p
chmod 777 /data/volumes

vim /etc/exports
/data/volumes 192.168.88.0/24(rw,no_root_squash)

systemctl start rpcbind
systemctl start nfs

showmount -e

  3.2 master节点编写yaml文件:

apiVersion: v1
kind: Pod
metadata:
  name: pod-vol-nfs
  namespace: default
spec:
  containers:
  - name: nginx01
    image: soscscs/myapp:v1
    volumeMounts:
    - name: html
      mountPath: /usr/share/nginx/html
  volumes:
    - name: html
      nfs:
        path: /data/volumes
        server: 192.168.88.105

 4. 总结:

  • emptydir:可实现Pod中的容器之间共享目录数据,但没有持久化数据的能力,存储卷会随着Pod生命周期结束而一起删除
  • hostPath:将node节点上的目录/文件挂载到Pod容器的指定目录/文件上,有持久化数据的能力,但只能在单个node节点上持久化数据,不能实现跨node节点的Pod共享数据
  • nfs:使用nfs服务将存储卷挂载到Pod容器的指定目录上,有持久化数据的能力,且也能实现跨node节点的Pod共享数据

三、PVC和PV:

  • 上面介绍的PV和PVC模式是需要运维人员先创建好PV,然后开发人员定义好PVC进行一对一的Bond,但是如果PVC请求成千上万,那么就需要创建成千上万的PV,对于运维人员来说维护成本很高,Kubernetes提供一种自动创建PV的机制,叫StorageClass,它的作用就是创建PV的模板。
  • 创建 StorageClass 需要定义 PV 的属性,比如存储类型、大小等;另外创建这种 PV 需要用到的存储插件,比如 Ceph 等。 有了这两部分信息,Kubernetes 就能够根据用户提交的 PVC,找到对应的 StorageClass,然后 Kubernetes 就会调用 StorageClass 声明的存储插件,自动创建需要的 PV 并进行绑定。

 1. PV 的状态有以下 4 种:

  • Available(可用):表示可用状态,还未被任何 PVC 绑定
  • Bound(已绑定):表示 PV 已经绑定到 PVC
  • Released(已释放):表示 PVC 被删掉,但是资源尚未被集群回收
  • Failed(失败):表示该 PV 的自动回收失败

 2. PV从创建到销毁的具体流程如下:

  1. 一个PV创建完后状态会变成Available,等待被PVC绑定。
  2. 一旦被PVC邦定,PV的状态会变成Bound,就可以被定义了相应PVC的Pod使用。
  3. Pod使用完后会释放PV,PV的状态变成Released。
  4. 变成Released的PV会根据定义的回收策略做相应的回收工作。有三种回收策略,Retain、Delete和Recycle。Retain就是保留现场,K8S集群什么也不做,等待用户手动去处理PV里的数据,处理完后,再手动删除PV。Delete策略,K8S会自动删除该PV及里面的数据。Recycle方式,K8S会将PV里的数据删除,然后把PV的状态变成Available,又可以被新的PVC绑定使用。

 3. pv定义的规格:

spec:
  nfs:(定义存储类型)
    path:(定义挂载卷路径)
    server:(定义服务器名称)
  accessModes:(定义访问模型,有以下三种访问模型,以列表的方式存在,也就是说可以定义多个访问模式)
    - ReadWriteOnce          #(RWO)卷可以被一个节点以读写方式挂载。 ReadWriteOnce 访问模式也允许运行在同一节点上的多个 Pod 访问卷。
	- ReadOnlyMany           #(ROX)卷可以被多个节点以只读方式挂载。
	- ReadWriteMany          #(RWX)卷可以被多个节点以读写方式挂载。
#nfs 支持全部三种;iSCSI 不支持 ReadWriteMany(iSCSI 就是在 IP 网络上运行 SCSI 协议的一种网络存储技术);HostPath 不支持 ReadOnlyMany 和 ReadWriteMany。
  capacity:(定义存储能力,一般用于设置存储空间)
    storage: 2Gi (指定大小)
  storageClassName: (自定义存储类名称,此配置用于绑定具有相同类别的PVC和PV)
  persistentVolumeReclaimPolicy: Retain    #回收策略(Retain/Delete/Recycle)

Retain(保留):当用户删除与之绑定的PVC时候,这个PV被标记为released(PVC与PV解绑但还没有执行回收策略)且之前的数据依然保存在该PV上,但是该PV不可用,需要手动来处理这些数据并删除该PV。
Delete(删除):删除与PV相连的后端存储资源。对于动态配置的PV来说,默认回收策略为Delete。表示当用户删除对应的PVC时,动态配置的volume将被自动删除。(只有 AWS EBS, GCE PD, Azure Disk 和 Cinder 支持)
Recycle(回收):如果用户删除PVC,则删除卷上的数据,卷不会删除。(只有 NFS 和 HostPath 支持)

 4. PVC定义的规格:

PV和PVC中的spec关键字段要匹配,比如存储(storage)大小、访问模式(accessModes)、存储类名称(storageClassName)

kubectl explain pvc.spec
spec:
  accessModes: (定义访问模式,必须是PV的访问模式的子集)
  resources:
    requests:
      storage: (定义申请资源的大小)
  storageClassName: (定义存储类名称,此配置用于绑定具有相同类别的PVC和PV)

 5. NFS使用静态PV和PVC:

  1. 准备好存储设备和共享目录

  2. 准备yaml配置文件创建PV资源,设置 存储类型 访问模式(RWO RWX ROX RWOP) 空间大小 回收策略(Retain Delete Recycle) storageClassName等

  3. 准备yaml配置文件创建PVC资源,设置 访问模式(必要条件,必须是PV能支持的访问模式) 空间大小(默认就近选择大于等于指定大小的PV) storageClassName等来绑定PV

  4. 创建Pod资源挂载PVC存储卷,设置存储卷类型为 persistentVolumeClaim ,并在容器配置中定义存储卷挂载点目录

  5.1. 配置nfs存储:

mkdir v{1,2,3,4,5}

vim /etc/exports
/data/volumes/v1 192.168.88.0/24(rw,no_root_squash)
/data/volumes/v2 192.168.88.0/24(rw,no_root_squash)
/data/volumes/v3 192.168.88.0/24(rw,no_root_squash)
/data/volumes/v4 192.168.88.0/24(rw,no_root_squash)
/data/volumes/v5 192.168.88.0/24(rw,no_root_squash)

showmount -e

  5.2 定义PV:

//这里定义5个PV,并且定义挂载的路径以及访问模式,还有PV划分的大小。
vim pv-demo.yaml
apiVersion: v1
kind: PersistentVolume
metadata:
  name: pv001
  labels:
    name: pv001
spec:
  nfs:
    path: /data/volumes/v1
    server: 192.168.88.105
  accessModes: ["ReadWriteMany","ReadWriteOnce"]
  capacity:
    storage: 1Gi
---
apiVersion: v1
kind: PersistentVolume
metadata:
  name: pv002
  labels:
    name: pv002
spec:
  nfs:
    path: /data/volumes/v2
    server: 192.168.88.105
  accessModes: ["ReadWriteOnce"]
  capacity:
    storage: 2Gi
---
apiVersion: v1
kind: PersistentVolume
metadata:
  name: pv003
  labels:
    name: pv003
spec:
  nfs:
    path: /data/volumes/v3
    server: 192.168.88.105
  accessModes: ["ReadWriteMany","ReadWriteOnce"]
  capacity:
    storage: 2Gi
---
apiVersion: v1
kind: PersistentVolume
metadata:
  name: pv004
  labels:
    name: pv004
spec:
  nfs:
    path: /data/volumes/v4
    server: 192.168.88.105
  accessModes: ["ReadWriteMany","ReadWriteOnce"]
  capacity:
    storage: 4Gi
---
apiVersion: v1
kind: PersistentVolume
metadata:
  name: pv005
  labels:
    name: pv005
spec:
  nfs:
    path: /data/volumes/v5
    server: 192.168.88.105
  accessModes: ["ReadWriteMany","ReadWriteOnce"]
  capacity:
    storage: 5Gi
kubectl apply -f pv-demo.yaml


kubectl get pv

  5.3 定义PVC:

这里定义了pvc的访问模式为多路读写,该访问模式必须在前面pv定义的访问模式之中。定义PVC申请的大小为2Gi,此时PVC会自动去匹配多路读写且大小为2Gi的PV,匹配成功获取PVC的状态即为Bound

vim pod-vol-pvc.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: mypvc
  namespace: default
spec:
  accessModes: ["ReadWriteMany"]
  resources:
    requests:
      storage: 2Gi
---
apiVersion: v1
kind: Pod
metadata:
  name: pod-vol-pvc
  namespace: default
spec:
  containers:
  - name: myapp
    image: ikubernetes/myapp:v1
    volumeMounts:
    - name: html
      mountPath: /usr/share/nginx/html
  volumes:
    - name: html
      persistentVolumeClaim:
        claimName: mypvc
kubectl apply -f pod-vol-pvc.yaml

kubectl get pv,pvc

  5.4 测试访问:

在存储服务器上创建index.html,并写入数据,通过访问Pod进行查看,可以获取到相应的页面。

cd /data/volumes/v5/
echo "welcome to use pv5" > index.html

kubectl get pods -o wide

curl  ip

 6. 动态 PV 创建:

Kubernetes 本身支持的动态 PV 创建不包括 NFS,所以需要使用外部存储卷插件分配PV。详见:

https://kubernetes.io/zh/docs/concepts/storage/storage-classes/

卷 插件称为 Provisioner(存储分配器),NFS 使用的是 nfs-client,这个外部卷插件会使用已经配置好的 NFS 服务器自动创建 PV。
Provisioner:用于指定 Volume 插件的类型,包括内置插件(如 kubernetes.io/aws-ebs)和外部插件(如 external-storage 提供的 ceph.com/cephfs)。

 1. 动态pv的请求过程:

Pod挂载pvc请求模板,pvc引用StorageClass资源,StorageClass通过不同的存储卷插件(Provisioner)动态分配不同存储类型的 pv 资源

 2. 创建动态PV的过程:

  1. 准备好存储设备和共享目录
  2. 如果是外置存储卷插件,需要先创建serviceaccount账户(Pod使用的账户)和做RBAC授权(创建角色授予相关资源对象的操作权限,再将账户与角色进行绑定),是的sa账户具有对PV PVC StorageClass等资源的操作权限
  3. 准备yaml配置文件创建外置存储卷插件的Pod,设置sa账户作为Pod的用户,并设置相关的环境变量(比如存储卷插件名称)
  4. 创建StorageClass(简称SC)资源,provisioner手动设置为存储卷插件名称 


 以上操作是一劳永逸的,之后只需要创建PVC资源时引用StorageClass就可以自动调用存储卷插件动态创建PV资源了 

  1. 准备yaml配置文件创建PVC资源,设置 访问模式 空间大小 storageClassName指定SC资源名称等来动态创建PV资源并绑定PV
  2. 创建Pod资源挂载PVC存储卷,设置存储卷类型为 persistentVolumeClaim ,并在容器配置中定义存储卷挂载点目录

 7. 实现 NFS 的动态 PV 创建:

  1. 在nfs节点上安装nfs,并配置nfs服务:

mkdir /opt/k8s
chmod 777 /opt/k8s/

vim /etc/exports
/opt/k8s 192.168.88.0/24(rw,no_root_squash,sync)

systemctl restart nfs

 2. 创建 Service Account:

创建 Service Account,用来管理 NFS Provisioner 在 k8s 集群中运行的权限,设置 nfs-client 对 PV,PVC,StorageClass 等的规则

#创建 Service Account 账户,用来管理 NFS Provisioner 在 k8s 集群中运行的权限
apiVersion: v1
kind: ServiceAccount
metadata:
  name: nfs-client-provisioner
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: nfs-client-provisioner-clusterrole
rules:
  - apiGroups: [""]
    resources: ["persistentvolumes"]
    verbs: ["get", "list", "watch", "create", "delete"]
  - apiGroups: [""]
    resources: ["persistentvolumeclaims"]
    verbs: ["get", "list", "watch", "update"]
  - apiGroups: ["storage.k8s.io"]
    resources: ["storageclasses"]
    verbs: ["get", "list", "watch"]
  - apiGroups: [""]
    resources: ["events"]
    verbs: ["list", "watch", "create", "update", "patch"]
  - apiGroups: [""]
    resources: ["endpoints"]
    verbs: ["create", "delete", "get", "list", "watch", "patch", "update"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: nfs-client-provisioner-clusterrolebinding
subjects:
- kind: ServiceAccount
  name: nfs-client-provisioner
  namespace: default
roleRef:
  kind: ClusterRole
  name: nfs-client-provisioner-clusterrole
  apiGroup: rbac.authorization.k8s.io

 3. 使用 Deployment 来创建 NFS Provisioner:

NFS Provisioner(即 nfs-client),有两个功能:一个是在 NFS 共享目录下创建挂载点(volume),另一个则是将 PV 与 NFS 的挂载点建立关联。

 存储卷插件是以pod的方式部署在k8s集群中的,使用 Deployment 来创建 NFS Provisioner

  • 由于 1.20 版本启用了 selfLink,所以 k8s 1.20+ 版本通过 nfs provisioner 动态生成pv会报错,解决方法如下:

  如果是多master需要在每个节点配置,否则 provisioner Pod 会报错

I1116 15:51:04.572876 1 controller.go:987] provision "default/mypvc-nfs" class "nfs-client-storageclass": started E1116 15:51:04.579547 1 controller.go:1004] provision "default/mypvc-nfs" class "nfs-client-storageclass": unexpected error getting claim reference: selfLink was empty, can't make reference

vim /etc/kubernetes/manifests/kube-apiserver.yaml
spec:
  containers:
  - command:
    - kube-apiserver
    - --feature-gates=RemoveSelfLink=false       #添加这一行
    - --advertise-address=192.168.80.20
......

kubectl apply -f /etc/kubernetes/manifests/kube-apiserver.yaml
kubectl delete pods kube-apiserver -n kube-system 
kubectl get pods -n kube-system | grep apiserver

或者直接移动kube-apiserver.yaml到上层目录,过一段时间在移动回来
  •    创建 NFS Provisioner
vim nfs-client-provisioner.yaml
kind: Deployment
apiVersion: apps/v1
metadata:
  name: nfs-client-provisioner
spec:
  replicas: 1
  selector:
    matchLabels:
      app: nfs-client-provisioner
  strategy:
    type: Recreate
  template:
    metadata:
      labels:
        app: nfs-client-provisioner
    spec:
      serviceAccountName: nfs-client-provisioner   	  #指定Service Account账户
      containers:
        - name: nfs-client-provisioner
          image: quay.io/external_storage/nfs-client-provisioner:latest
          imagePullPolicy: IfNotPresent
          volumeMounts:
            - name: nfs-client-root
              mountPath: /persistentvolumes
          env:
            - name: PROVISIONER_NAME
              value: nfs-storage       #配置provisioner的Name,确保该名称与StorageClass资源中的provisioner名称保持一致
            - name: NFS_SERVER
              value: stor01           #配置绑定的nfs服务器
            - name: NFS_PATH
              value: /opt/k8s          #配置绑定的nfs服务器目录
      volumes:              #申明nfs数据卷
        - name: nfs-client-root
          nfs:
            server: stor01
            path: /opt/k8s

 4. 创建 StorageClass:

负责建立 PVC 并调用 NFS provisioner 进行预定的工作,并让 PV 与 PVC 建立关联

vim nfs-client-storageclass.yaml
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: nfs-client-storageclass
provisioner: nfs-storage     #这里的名称要和provisioner配置文件中的环境变量PROVISIONER_NAME保持一致
parameters:
  archiveOnDelete: "false"   #false表示在删除PVC时不会对数据目录进行打包存档,即删除数据;为ture时就会自动对数据目录进行打包存档,存档文件以archived开头
  
  
kubectl apply -f nfs-client-storageclass.yaml

 5. 创建PVC和Pod:

vim test-pvc-pod.yaml
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: test-nfs-pvc
  #annotations: volume.beta.kubernetes.io/storage-class: "nfs-client-storageclass"     #另一种SC配置方式
spec:
  accessModes:
    - ReadWriteMany
  storageClassName: nfs-client-storageclass    #关联StorageClass对象
  resources:
    requests:
      storage: 1Gi
---
apiVersion: v1
kind: Pod
metadata:
  name: test-storageclass-pod
spec:
  containers:
  - name: busybox
    image: busybox:latest
    imagePullPolicy: IfNotPresent
    command:
    - "/bin/sh"
    - "-c"
    args:
    - "sleep 3600"
    volumeMounts:
    - name: nfs-pvc
      mountPath: /mnt
  restartPolicy: Never
  volumes:
  - name: nfs-pvc
    persistentVolumeClaim:
      claimName: test-nfs-pvc      #与PVC名称保持一致
	  
	  
kubectl apply -f test-pvc-pod.yaml

 6. 测试:

PVC 通过 StorageClass 自动申请到空间
kubectl get pvc


//进入 Pod 在挂载目录 /mnt 下写一个文件,然后查看 NFS 服务器上是否存在该文件
kubectl exec -it test-storageclass-pod sh
/ # cd /mnt/
/mnt # echo 'this is test file' > test.txt

//发现 NFS 服务器上存在,说明验证成功
cat /opt/k8s/test.txt

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/155143.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Jmeter- Beanshell语法和常用内置对象(网络整理)

在利用jmeter进行接口测试或者性能测试的时候,我们需要处理一些复杂的请求,此时就需要利用beanshell脚本了,BeanShell是一种完全符合Java语法规范的脚本语言,并且又拥有自己的一些语法和方法,所以它和java是可以无缝衔接的。beans…

python趣味编程-5分钟实现一个测验应用程序(含源码、步骤讲解)

Python测验是用 Python 编程语言编写的,这个关于 Python 编程的简单测验是一个简单的项目,用于测试一个人在给定主题考试中的知识能力。 Python 中的 Quiz项目仅包含用户端。用户必须先登录或注册才能开始Python 测验。 此外,还规定了解决问题的时间。用户应在时间结束前解…

VIM去掉utf-8 bom头

Windows系统的txt文件在使用utf-8编码保存时会默认在文件开头插入三个不可见的字符(0xEF 0xBB 0xBF)称为BOM头 BOM头文件 0.加上BOM标记: :set bomb 1.查询当前UTF-8编码的文件是否有BOM标记: :set bomb? :set bomb? 2.BOM头:文…

C语言的动态内存管理

目录 一、malloc函数 二、free函数 三、calloc函数 四、realloc函数 五、realloc函数原地扩容和异地扩容测试 六、动态内存管理的注意事项 一、malloc函数 1.头文件:stdlib.h(malloc.h) 2.函数原型:void * malloc(size_t siz…

STM32_SPI总线驱动OLED详细原理讲解

目录 这里写目录标题 第13章 Cortex-M4-SPI总线13.1 SPI总线概述13.1.1 SPI总线介绍13.1.2 SPI总线接口与物理拓扑结构13.1.3 SPI总线通信原理13.1.4 SPI总线数据格式 13.2 IO口模拟SPI操作OLED13.2.1 常见的显示设备13.2.2 OLED显示屏概述13.2.3 OLED特征13.2.4 显示原理13.2.…

模拟实现一个Linux中的简单版shell

exec系列接口中的环境变量 在之前我们学习了exec系类函数的功能就是将一个程序替换成另外一个程序。 然后就会出现下面的问题: 首先父进程对应的环境变量的信息是从bash中来的,因为我们自己写的父进程在运行的时候首先就要成为bash的子进程。这里我们将…

基于单片机的温度控制器系统设计

**单片机设计介绍, 基于单片机的温度控制器系统设计 文章目录 一 概要二、功能设计设计思路 三、 软件设计原理图 五、 程序六、 文章目录 一 概要 基于单片机的温度控制器系统是一种利用单片机来检测环境温度并控制温度的系统。它通常由以下几个部分组成&#xff…

12v24v60v高校同步降压转换芯片推荐

12V/24V/60V 高校同步降压转换芯片推荐: 对于需要高效、稳定、低噪音的降压转换芯片,推荐使用WD5030E和WD5105。这两款芯片都是采用同步整流技术,具有高效率、低噪音、低功耗等优点,适用于各种电子设备。 WD5030E是一款高效率…

Web前端—小兔鲜儿电商网站底部设计及网站中间过渡部分设计

版本说明 当前版本号[20231116]。 版本修改说明20231116初版 目录 文章目录 版本说明目录底部(footer)服务帮助中心版权 banner侧边栏圆点 新鲜好物(goods)标题 底部(footer) 结构:通栏 >…

阿里云ESSD云盘、高效云盘和SSD云盘介绍和IOPS性能参数表

阿里云服务器系统盘或数据盘支持多种云盘类型,如高效云盘、ESSD Entry云盘、SSD云盘、ESSD云盘、ESSD PL-X云盘及ESSD AutoPL云盘等,阿里云服务器网aliyunfuwuqi.com详细介绍不同云盘说明及单盘容量、最大/最小IOPS、最大/最小吞吐量、单路随机写平均时延…

Accelerate 0.24.0文档 三:超大模型推理(内存估算、Sharded checkpoints、bitsandbytes量化、分布式推理)

文章目录 一、内存估算1.1 Gradio Demos1.2 The Command 二、使用Accelerate加载超大模型2.1 模型加载的常规流程2.2 加载空模型2.3 分片检查点(Sharded checkpoints)2.4 示例:使用Accelerate推理GPT2-1.5B2.5 device_map 三、bitsandbytes量…

shell脚本学习06(小滴课堂)

fi是结束循环的意思。 这里脚本1:代表着脚本和1.txt文件处于同一目录下。 脚本2为绝对路径的写法。 在使用./进行启动时,我们需要给文件赋予执行权限。 把文件名改为2.txt: 什么都没有返回,说明文件已经不存在。 可以使用脚本2 if else的方式…

基于单片机的智能家居安保系统(论文+源码)

1.系统设计 本次基于单片机的智能家居安保系统设计,在功能上如下: 1)以51单片机为系统控制核心; 2)温度传感器、人体红外静释电、烟雾传感器来实现检测目的; 3)以GSM模块辅以按键来实现远/近程…

Jenkinsfile+Dockerfile前端vue自动化部署

前言 本篇主要介绍如何自动化部署前端vue项目 其中,有两种方案: 第一种是利用nginx进行静态资源转发;第二种方案是利用nodejs进行启动访问; 各个组件版本如下: Docker 最新版本;Jenkins 2.387.3nginx …

SQL注入学习--GTFHub(布尔盲注+时间盲注+MySQL结构)

目录 布尔盲注 手工注入 笔记 Boolean注入 # 使用脚本注入 sqlmap注入 使用Burpsuite进行半自动注入 时间盲注 手工注入 使用脚本注入 sqlmap注入 使用Burpsuite进行半自动注入 MySQL结构 手工注入 sqlmap注入 笔记 union 联合注入,手工注入的一般步骤 …

conan 入门指南

conan 新手入门 1 需要注意的事项2 使用 Poco 库的 MD5 哈希计算器2.1 创建源文件2.2 搜索poco conan 库2.3 获取poco/1.9.4的元数据2.4 创建conanfile.txt2.5 安装依赖2.6 创建编译文件2.7 构建和运行程序 3 安装依赖程序4 检查依赖关系5 搜索软件包6 与其他配置一起构建 该篇…

LeetCode(25)验证回文串【双指针】【简单】

目录 1.题目2.答案3.提交结果截图 链接: 验证回文串 1.题目 如果在将所有大写字符转换为小写字符、并移除所有非字母数字字符之后,短语正着读和反着读都一样。则可以认为该短语是一个 回文串 。 字母和数字都属于字母数字字符。 给你一个字符串 s&…

2.FastRunner定时任务Celery+RabbitMQ

注意:celery版本和Python冲突问题 不能用高版本Python 用3.5以下,因为项目的celery用的django-celery 3.2.2 python3.7 async关键字 冲突版本 celery3.x方案一: celery3.xpython3.6方案二 : celery4.xpython3.7 解决celery执…

【Linux网络】搭建内外网的网关服务器,实现DNS分离解析与DHCP自动分配

一、实验要求: 二、实验思路剖析: 网关服务器: 客户端准备: 实操: 第一步先安装dhcp服务和bind服务 第二步双网卡,配置网卡的ip地址 第三步:开始配置dhcp 第四步:做dns分离解析…

聊一聊前端面临的安全威胁与解决对策

前端是用户在使用您的网站或Web应用程序时首先体验到的东西。如果您的Web应用程序的前端受到侵害,它可能会影响整个布局,并造成糟糕的用户体验,可能难以恢复。集成前端安全变得越来越重要,本文将指导您通过可以应用于保护您的Web应…