【深度学习】吴恩达课程笔记(四)——优化算法

笔记为自我总结整理的学习笔记,若有错误欢迎指出哟~

【吴恩达课程笔记专栏】
【深度学习】吴恩达课程笔记(一)——深度学习概论、神经网络基础
【深度学习】吴恩达课程笔记(二)——浅层神经网络、深层神经网络
【深度学习】吴恩达课程笔记(三)——参数VS超参数、深度学习的实践层面

吴恩达课程笔记——优化算法

  • 八、优化算法
    • 1.优化算法介绍
    • 2.批量梯度下降(Batch Gradient Descent)
      • 目的
      • 步骤
      • 优点
      • 缺点
    • 3.随机梯度下降(Stochastic Gradient Descent, SGD)
      • 目的
      • 步骤
      • 优点
      • 缺点
    • 4.小批量梯度下降(Mini-batch Gradient Descent)
      • 目的
      • 步骤
      • 优点
      • 缺点
      • 理解
      • 如何选择mini-batch size
    • 5.指数加权平均数(Exponentially Weighted Averages)
      • 目的
      • 步骤
      • 优点
      • 缺点
      • 具体加权过程举例
      • 指数加权平均的偏差修正
    • 6.动量梯度下降法 (Gradient descent of Momentum)
      • 目的
      • 基本原理
    • 7.RMSprop
      • 目的
      • 优点
      • 基本原理
    • 8.Adam 优化算法(Adam optimization algorithm)
      • 简介
      • 工作方式
      • 优点
      • 算法
    • 9.学习率衰减(Learning rate decay)
      • 做法
      • 几种公式
    • 10.局部最优问题

八、优化算法

1.优化算法介绍

当涉及深度学习优化算法时,我们通常会面临一个目标:最小化一个损失函数。这个损失函数衡量了模型预测与实际值之间的差距。为了找到最佳的模型参数,我们需要使用优化算法来调整这些参数,以便最小化损失函数。

以下是一些常用的深度学习优化算法:

  1. 梯度下降(Gradient Descent):通过计算成本函数相对于参数的梯度,并沿着梯度的反方向更新参数,以最小化成本函数。
  2. 随机梯度下降(Stochastic Gradient Descent, SGD):与梯度下降类似,但是每次迭代中只使用一个样本来计算梯度,这在大型数据集上更有效。
  3. 小批量梯度下降(Mini-batch Gradient Descent):结合了批量梯度下降和随机梯度下降的优点,每次迭代使用一小批样本来计算梯度。
  4. 指数加权平均数( Exponentially weighted averages):常用于计算梯度的指数加权平均或者计算参数的指数加权平均。
  5. 动量梯度下降法 (Gradient descent of Momentum) :梯度下降算法的一种改进版本,它结合了梯度下降和动量的概念。
  6. RMSProp:通过考虑梯度的平方的指数衰减平均值来调整学习率,以应对Adagrad的学习率急剧下降问题。
  7. Adam 优化算法(Adam optimization algorithm) :在训练神经网络时有效地调整参数,并能够适应不同参数的变化情况,结合了动量梯度下降法和RMSProp算法。
  8. 学习率衰减(Learning rate decay) :在训练神经网络时逐渐降低学习率的过程。

这些算法都有各自的优劣势,适用于不同类型的深度学习任务。在实际应用中,通常需要根据具体问题和数据集的特点来选择合适的优化算法。

2.批量梯度下降(Batch Gradient Descent)

目的

批量梯度下降是为了优化模型参数,使得损失函数达到最小值,从而实现训练数据的拟合和模型的泛化能力。

步骤

  1. 初始化参数:随机初始化模型参数或采用预训练的参数作为初始值。

  2. 对于整个训练样本集合进行如下操作

    • 计算梯度:计算损失函数关于所有训练样本的参数的梯度,即
      ∇ J ( θ ) = 1 m ∑ i = 1 m ∇ J ( θ ; x ( i ) , y ( i ) ) \nabla J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \nabla J(\theta; x^{(i)}, y^{(i)}) J(θ)=m1i=1mJ(θ;x(i),y(i))

    • 更新参数:利用所有训练样本的梯度信息,按照梯度下降的更新规则来更新模型参数:
      θ = θ − η ⋅ ∇ J ( θ ) \theta = \theta - \eta \cdot \nabla J(\theta) θ=θηJ(θ)
      其中, ( η ) 是学习率, ( m ) 是训练样本的数量。

优点

  • 可以保证收敛性,即在合理的学习率下,批量梯度下降一定可以找到全局最优解或局部最优解。

缺点

  • 当训练样本很大时,计算所有训练样本的梯度会非常耗时,尤其在内存有限的情况下。
  • 对于大规模数据集,批量梯度下降的计算效率较低。

3.随机梯度下降(Stochastic Gradient Descent, SGD)

目的

随机梯度下降(Stochastic Gradient Descent, SGD)是梯度下降法的一种变种

通过每次迭代仅利用单个训练样本的梯度信息,来更新模型参数,从而减少计算开销,并加快收敛速度。

步骤

  1. 初始化参数:随机初始化模型参数或采用预训练的参数作为初始值。

  2. 对于每个训练样本 (x(i), y(i)) 进行如下操作

    • 计算梯度:计算损失函数关于当前样本的参数的梯度,即

      ∇ J ( θ ; x ( i ) , y ( i ) ) \nabla J(\theta; x^{(i)}, y^{(i)}) J(θ;x(i),y(i))

    • 更新参数:利用当前样本的梯度信息,按照梯度下降的更新规则来更新模型参数:

      θ = θ − η ⋅ ∇ J ( θ ; x ( i ) , y ( i ) ) \theta = \theta - \eta \cdot \nabla J(\theta; x^{(i)}, y^{(i)}) θ=θηJ(θ;x(i),y(i))

      其中,( η )是学习率。

优点

  • 减少计算开销:由于每次仅利用单个样本来更新参数,相比批量梯度下降,SGD在计算上更为高效。
  • 适用于大规模数据集:特别适用于大规模数据集,因为每次迭代只需要处理一个样本。

缺点

  • 不稳定性:由于每次迭代仅利用单个样本,使得更新方向带有较大的随机性,可能导致收敛过程不稳定。
  • 学习率调整困难:学习率的选择对于SGD的影响较大,需要谨慎调整。

4.小批量梯度下降(Mini-batch Gradient Descent)

目的

小批量梯度下降是为了优化模型参数,使得损失函数达到最小值,从而实现训练数据的拟合和模型的泛化能力。

步骤

  1. 初始化参数:随机初始化模型参数或采用预训练的参数作为初始值。

  2. 对于每个小批量样本(x(i), y(i)) 进行如下操作

    • 计算梯度:计算损失函数关于当前小批量样本的参数的梯度,即
      1 m ∑ i = 1 m ∇ J ( θ ; x ( i ) , y ( i ) ) \frac{1}{m} \sum_{i=1}^{m} \nabla J(\theta; x^{(i)}, y^{(i)}) m1i=1mJ(θ;x(i),y(i))

    • 更新参数:利用当前小批量样本的梯度信息,按照梯度下降的更新规则来更新模型参数:
      θ = θ − η ⋅ 1 m ∑ i = 1 m ∇ J ( θ ; x ( i ) , y ( i ) ) \theta = \theta - \eta \cdot \frac{1}{m} \sum_{i=1}^{m} \nabla J(\theta; x^{(i)}, y^{(i)}) θ=θηm1i=1mJ(θ;x(i),y(i))
      其中, ( η ) 是学习率, ( m ) 是小批量样本的大小。

优点

  • 小批量梯度下降结合了梯度下降和随机梯度下降的优点,可以更快地收敛到局部最优解。
  • 可以充分利用矩阵运算的并行性,提高计算效率。

缺点

  • 需要调节的超参数更多,如学习率 ( η ) 和小批量样本的大小 ( m )。
  • 需要对数据进行分批处理,增加了实现的复杂性。

理解

定义梯度下降时使用一次全部样本集合为一代

  1. batch梯度下降的 J 会不断下降;mini-batch梯度下降的 J 不一定会不断下降,但是整体呈现下降趋势。

在这里插入图片描述

  1. 两者都需要多次遍历全部数据集才会有效果。在mini-batch中,如果只经历一代,那么梯度下降的效果虽然比batch一代好,但总体效果仍是微小的。

  2. 使用mini-batch时,每重新开始遍历一次数据集,应当把数据集中的数据重新打乱分配到mini-batch中,体现出随机性

如何选择mini-batch size

  1. 小训练集:使用batch gradient decent(m less than 2000)
  2. 通常的minibatch size:64、128、256、512、1024

5.指数加权平均数(Exponentially Weighted Averages)

目的

指数加权平均数用于对时间序列数据进行平滑处理,以便观察数据的长期趋势。

步骤

假设给定一个序列 ( x1, x2, …, xt ),其指数加权平均数 ( vt ) 的计算方式为:

v t = β v t − 1 + ( 1 − β ) x t v_t = \beta v_{t-1} + (1-\beta) x_t vt=βvt1+(1β)xt
( 0 < 𝛽 < 1 ) 被称为平滑因子,较大的平滑因子意味着新观测值对平均数的影响更大,从而使得平均数更快地适应最新的观测值;而较小的平滑因子则意味着平均数更加稳定、更不容易受到新观测值的影响。

( v0 ) 可以被初始化为 0 或者 x1 ,为了在开始时确定初始的指数加权平均数值

优点

  • 对不同时刻的数据赋予不同的权重,更加灵活地适应数据变化。
  • 计算高效,每次更新只需要一次乘法和一次加法运算。

缺点

  • 对于某些特定类型的数据,可能对异常值(outliers)过于敏感,从而影响平均值的准确性。

具体加权过程举例

在这里插入图片描述
假设英国去年第t天的气温是θt
在这里插入图片描述
要用一条曲线拟合温度变化,可以进行如下操作
v 0 = 0 v t = β v t − 1 + ( 1 − β ) θ t v_0=0 \\ v_t=\beta v_{t-1}+(1-\beta)\theta_t v0=0vt=βvt1+(1β)θt

其中 vt 是第t天附近的 1/(1-𝛽) 天的平均天气。

为什么这么规定?

( 1 − ε ) 1 / ε 约等于 1 e (数学中一个挺重要的数) 这说明 1 1 − β 天之外的数所占的权重总共不到 1 e ,不那么值得关注了 (1-ε)^{1/ε}约等于\frac{1}{e}(数学中一个挺重要的数)\\ 这说明\frac{1}{1-\beta}天之外的数所占的权重总共不到\frac{1}{e},不那么值得关注了 1ε1/ε约等于e1(数学中一个挺重要的数)这说明1β1天之外的数所占的权重总共不到e1,不那么值得关注了

β = 0.9 ( 1 − 0.1 ) 1 0.1 = 0. 9 10 β = 0.98 ( 1 − 0.02 ) 1 0.02 = 0.9 8 50 \beta = 0.9\\ (1-0.1)^{\frac{1}{0.1}} = 0.9^{10} \\ \beta = 0.98 \\ (1-0.02)^{\frac{1}{0.02}} = 0.98^{50} β=0.9(10.1)0.11=0.910β=0.98(10.02)0.021=0.9850

可以看出 𝛽 越大,平均的天数越大,拟合得越粗略。
在这里插入图片描述
红色:𝛽=0.9;绿色:𝛽=0.98

指数加权平均的偏差修正

在这里插入图片描述
由于v0=0,v1=𝛽 v0 + (1-𝛽) θ1 = (1-𝛽)θ1,前几个vi的值会非常的小,如图中紫线。当迭代到一定数量之后,拟合才变得正常(紫线逼近绿线)。

偏差修正的目的是为了消除初始时刻的平均值对整体平均值的影响。偏差修正可以通过以下公式实现:
v t ^ = v t 1 − α t v t ^ 表示经过偏差修正后的平均值 v t 表示未经修正的平均值 β 为平滑因子 t 表示时间步 \hat{v_t} = \frac{v_t}{1 - \alpha^t} \\ \hat{v_t} 表示经过偏差修正后的平均值\\ v_t 表示未经修正的平均值\\ \beta 为平滑因子\\ t 表示时间步\\ vt^=1αtvtvt^表示经过偏差修正后的平均值vt表示未经修正的平均值β为平滑因子t表示时间步
通过偏差修正,可以有效地减小最初几个数据点对平均值的影响,得到更加准确和稳定的指数加权平均值。

6.动量梯度下降法 (Gradient descent of Momentum)

目的

加速梯度下降过程

基本原理

传统的梯度下降法在更新参数时只考虑当前的梯度值,而动量梯度下降法引入了一个额外的动量项,用于模拟物理中的动量效应。

在每次参数更新时,动量梯度下降法会根据当前梯度和上一次的动量来计算一个更新量,并将该更新量应用于参数。更新量由两部分组成:一部分是当前梯度的方向,另一部分是上一次动量的方向。
在这里插入图片描述
蓝线是一般梯度下降的成本函数值迭代情况,红线是动量梯度下降法中成本函数迭代境况。

我们使用指数加权平均来计算新的dW和db。在竖直方向上,由于平均值接近0,所以动量梯度下降的竖直方向迭代值接近0 。在水平方向上,动量梯度下降的迭代值则为正常水平。
d w = β ⋅ d w t − 1 + ( 1 − β ) ⋅ ∂ J ∂ w d b = β ⋅ d b t − 1 + ( 1 − β ) ⋅ ∂ J ∂ b w = w − α ⋅ d w b = b − α ⋅ d b dw = \beta \cdot dw_{t-1} + (1 - \beta) \cdot \frac{\partial J}{\partial w}\\ db = \beta \cdot db_{t-1} + (1 - \beta) \cdot \frac{\partial J}{\partial b}\\ w = w - \alpha \cdot dw\\ b = b - \alpha \cdot db\\ dw=βdwt1+(1β)wJdb=βdbt1+(1β)bJw=wαdwb=bαdb

β 是动量系数 , 通常取 0.9 α 是学习率 J 是损失函数 d w t − 1 和 d b t − 1 表示上一次的权重和偏置更新量 ∂ J ∂ w 和 ∂ J ∂ b 分别是损失函数对权重和偏置的偏导数 w 和 b 分别表示更新后的权重和偏置 \beta 是动量系数,通常取0.9\\ \alpha 是学习率\\ J 是损失函数\\ dw_{t-1} 和 db_{t-1} 表示上一次的权重和偏置更新量\\ \frac{\partial J}{\partial w} 和 \frac{\partial J}{\partial b} 分别是损失函数对权重和偏置的偏导数\\ w 和 b 分别表示更新后的权重和偏置 β是动量系数,通常取0.9α是学习率J是损失函数dwt1dbt1表示上一次的权重和偏置更新量wJbJ分别是损失函数对权重和偏置的偏导数wb分别表示更新后的权重和偏置

7.RMSprop

目的

解决传统梯度下降法中学习率衰减过快的问题。RMSprop通过对梯度的平方进行指数加权移动平均来调整学习率,从而加速模型的训练。

优点

使用它的时候可以适当加大学习率

基本原理

在这里插入图片描述
如图,我们不想要绿线,而想要蓝线。

我们需要计算一个额外变量S,S等于目前数据附近水平方向或竖直方向的dX的方差。

我们在更新数据(W、b)的时候,把原来要减掉的dX除以这个方差,那么方差大的方向变化量就减少,方差小的方向变化量就仍处于正常水平甚至增大。

8.Adam 优化算法(Adam optimization algorithm)

简介

adam是训练神经网络中最有效的优化算法之一。它结合了momentum和RMSprop。

工作方式

  1. 计算上一个梯度的指数加权平均,存储在v中。
  2. 计算上一个梯度指数加权平均的平方,存储在s中。
  3. 使用adam的规则更新参数。

优点

  1. 通常比较节省内存(尽管还是比GD和momentum多)
  2. 即使在低学习率条件下也能运行得很好

算法

{ v d W [ l ] = β 1 v d W [ l ] + ( 1 − β 1 ) ∂ J ∂ W [ l ] v d W [ l ] c o r r e c t e d = v d W [ l ] 1 − ( β 1 ) t s d W [ l ] = β 2 s d W [ l ] + ( 1 − β 2 ) ( ∂ J ∂ W [ l ] ) 2 s d W [ l ] c o r r e c t e d = s d W [ l ] 1 − ( β 1 ) t W [ l ] = W [ l ] − α v d W [ l ] c o r r e c t e d s d W [ l ] c o r r e c t e d + ε l = 1 , . . . , L \begin{cases} v_{dW^{[l]}} = \beta_1 v_{dW^{[l]}} + (1 - \beta_1) \frac{\partial \mathcal{J} }{ \partial W^{[l]} } \\ v^{corrected}_{dW^{[l]}} = \frac{v_{dW^{[l]}}}{1 - (\beta_1)^t} \\ s_{dW^{[l]}} = \beta_2 s_{dW^{[l]}} + (1 - \beta_2) (\frac{\partial \mathcal{J} }{\partial W^{[l]} })^2 \\ s^{corrected}_{dW^{[l]}} = \frac{s_{dW^{[l]}}}{1 - (\beta_1)^t} \\ W^{[l]} = W^{[l]} - \alpha \frac{v^{corrected}_{dW^{[l]}}}{\sqrt{s^{corrected}_{dW^{[l]}}} + \varepsilon} \end{cases} \\ l = 1, ..., L vdW[l]=β1vdW[l]+(1β1)W[l]JvdW[l]corrected=1(β1)tvdW[l]sdW[l]=β2sdW[l]+(1β2)(W[l]J)2sdW[l]corrected=1(β1)tsdW[l]W[l]=W[l]αsdW[l]corrected +εvdW[l]correctedl=1,...,L
其中:

  • t是adam进行到的步数
  • L是神经网络的层数
  • 𝛽1(建议使用0.9)和 𝛽2(建议使用0.999)是控制两个指数加权平均的
  • α 是学习率
  • ε 是一个用来放置分母为0的值很小的数

9.学习率衰减(Learning rate decay)

做法

在不同的代(epoch)上使用递减的学习率

几种公式

α = 1 1 + d e c a y r a t e ∗ e p o c h n u m ∗ α 0 α = a e p o c h n u m ∗ α 0 α = k e p o c h n u m ∗ α 0 手动调整 α 的值 \alpha=\frac{1}{1+decayrate*epochnum}*\alpha_0 \\ \alpha=a^{epochnum}*\alpha_0 \\ \alpha=\frac{k}{\sqrt{epochnum}}*\alpha_0 \\ 手动调整\alpha的值 α=1+decayrateepochnum1α0α=aepochnumα0α=epochnum kα0手动调整α的值

10.局部最优问题

  1. 在神经网络规模较大、参数较多的时候,实际上很难达到局部最优点,更有可能达到的是鞍点。因此梯度下降被困在局部最优点不是很大的问题。
  2. 鞍点会减缓学习速度,而momentum、RMSprop、Adam正式可以解决这种问题

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/154501.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【chatglm3】(4):如何设计一个知识库问答系统,参考智谱AI的知识库系统,

0&#xff0c;视频地址 https://www.bilibili.com/video/BV16j411E7FX/?vd_source4b290247452adda4e56d84b659b0c8a2 【chatglm3】&#xff08;4&#xff09;&#xff1a;如何设计一个知识库问答系统&#xff0c;参考智谱AI的知识库系统&#xff0c;学习设计理念&#xff0c;…

unity3d与vs 附加到unity debug报错

点击 附加到unity报错 选择在 调试-》附加unity->选择unity实例

1、LeetCode之两数之和

两数之和 给定一个整数数组 nums和一个目标值target&#xff0c;请你在该数组中找出和为目标值的那两个整数&#xff0c;并返回他们的数组下标。你可以假设每种输入只会对应一个答案。但是&#xff0c;你不能重复利用这个数组中同样的元素。 nums [2,7,11,15]target 9[0,1]枚…

C++ STL简介

1. 什么是STL STL(standard template libaray-标准模板库)&#xff1a;是C标准库的重要组成部分&#xff0c;不仅是一个可复用的组件库&#xff0c;而且是一个包罗数据结构与算法的软件框架。 2. STL的版本 原始版本 Alexander Stepanov、Meng Lee 在惠普实验室…

Unity 代码控制Text文本换行

Unity 要通过代码控制Text文本换行&#xff0c;实现方法比较简单&#xff0c;无论是传统的Text&#xff0c;还是TMP文本&#xff0c;都是通过在字符串需要换行的地方加上换行符【\n】。 不过在Text属性栏中要确保设置自动换行模式&#xff1a; 如传统的设置如图&#xff1a; …

【计算机网络】TCP协议

文章目录 TCP协议TCP的结构TCP的特点 TCP如何保证可靠传输确认应答&#xff08;可靠机制&#xff09;超时重传&#xff08;可靠机制&#xff09;连接管理&#xff08;可靠机制&#xff09;滑动窗口&#xff08;效率机制&#xff09;流量控制&#xff08;可靠机制&#xff09;拥…

场景图形管理-多视图多窗口渲染示例(4)

多视图多窗口渲染示例的代码如程序清单8-6所示 // 多视图多窗口渲染示例 void compositeViewer_8_6(const string &strDataFolder) {// 创建一个CompositeViewer对象osg::ref_ptr<osgViewer::CompositeViewer> viewer new osgViewer::CompositeViewer();// 创建两个…

vue源码分析(八)—— update分析(首次渲染)

文章目录 前言一、update首次渲染的核心方法__path__二、__path__方法详解1. 文件路径2. inBrowser的解析&#xff08;1&#xff09;noop 的空函数定义&#xff1a;&#xff08;2&#xff09;patch 的含义 3. createPatchFunction 的解析4. path 方法解析&#xff08;1&#xf…

基于JavaWeb+SpringBoot+Vue医疗器械商城微信小程序系统的设计和实现

基于JavaWebSpringBootVue医疗器械商城微信小程序系统的设计和实现 源码获取入口前言主要技术系统设计功能截图Lun文目录订阅经典源码专栏Java项目精品实战案例《500套》 源码获取 源码获取入口 前言 摘 要 目前医疗器械行业作为医药行业的一个分支&#xff0c;发展十分迅速。…

μC/OS-II---消息邮箱管理2(os_mbox.c)

目录 消息邮箱发送&#xff08;扩展&#xff09;从消息邮箱获取/无等待消息邮箱状态查询消息邮箱中断等待用邮箱作为二值信号量&#xff08;无&#xff09;用邮箱实现延时&#xff08;无&#xff09; 消息邮箱发送&#xff08;扩展&#xff09; #if OS_MBOX_POST_OPT_EN > …

私域电商:实体商家想通过异业联盟引流,应该怎么做?

​异业联盟引流是一种有效的营销策略&#xff0c;通过与不同行业的企业或品牌合作&#xff0c;共同推广产品或服务&#xff0c;扩大品牌影响力和用户群体。以下是异业联盟引流的一些详细过程&#xff1a; ​选择合作联盟&#xff1a; 首先&#xff0c;需要选择与自己企业或品…

C#创建并调用dll

文章目录 1.VS2019创建C#主程序2.编译主程序3.添加类库工程&#xff0c;并添加计算逻辑4.给主程序添加引用项5.重新编译主程序6.主程序添加测试逻辑 1.VS2019创建C#主程序 2.编译主程序 debug目录下生成exe&#xff1a; 3.添加类库工程&#xff0c;并添加计算逻辑 添加计算逻…

应用层使用select进行检测连接状态

可以参考TCP连接保活机制来设计应用层的连接状态监测&#xff0c;同时需要注意到有两个关键点&#xff1a; 1.需要使用定时器&#xff0c;这可以通过使用 I/O 复用自身的机制来实现&#xff0c;这点可以先看一下《使用select实现定时任务》&#xff1b; 2.需要设计一个 PING-PO…

alias linux 命令别名使用

如果在系统中你想要快速的完成一个命令&#xff0c;你可以使用alias命令&#xff1a; 如&#xff1a; alias ppsystemctl status httpd输入pp命令后即可得到如下结果 但这之时临时生效&#xff0c;一旦重启机器&#xff0c;命令就会失效&#xff1b;想要永久生效&#xff0c;…

vue-admin-template

修改登录接口 1.f12查看请求接口 模仿返回数据写接口 修改方式1 1.在env.devolopment修改 修改方式2 vue.config.js 改成本地接口地址 配置转发 后端创建相应接口&#xff0c;使用map返回相同的数据 修改前端请求路径 修改前端返回状态码 utils里面的request.js

成功解决:com.alibaba.druid.support.logging.JakartaCommonsLoggingImpl.

文章底部有个人公众号&#xff1a;热爱技术的小郑。主要分享开发知识、学习资料、毕业设计指导等。有兴趣的可以关注一下。为何分享&#xff1f; 踩过的坑没必要让别人在再踩&#xff0c;自己复盘也能加深记忆。利己利人、所谓双赢。 前言 使用Spring 整合 mybatis的时候 报错…

ES5中实现继承

本篇文章主要说明在ES5中最通用最兼容的继承实现方式&#xff0c;继承作为面向对象的三大特性之一&#xff0c;在js中实现继承对代码的简洁性&#xff0c;逻辑的连贯性都有很大的帮助。 实现思路 封装创建中间联系对象的函数 继承可以简单理解为建立子类和父类之间的联系&…

Django测试环境搭建及ORM查询(创建外键|跨表查询|双下划线查询 )

文章目录 一、表查询数据准备及测试环境搭建模型层前期准备测试环境搭建代码演示 二、ORM操作相关方法三、ORM常见的查询关键字四、ORM底层SQL语句五、双下划线查询数据查询&#xff08;双下划线&#xff09;双下划线小训练Django ORM __双下划线细解 六、ORM外键字段创建基础表…

【408】计算机学科专业基础 - 操作系统

一、计算机系统概述 1.简介 什么是操作系统&#xff1f; 操作系统&#xff08;Operating Ststem&#xff0c; OS&#xff09;是指控制和管理整个计算机系统的硬件和软件资源&#xff0c;并合理地组织调度计算机的工作和资源的分配&#xff0c;以提供给用户和其他软件方便的接口…