Kafka的重要组件,谈谈流处理引擎Kafka Stream

系列文章目录

上手第一关,手把手教你安装kafka与可视化工具kafka-eagle
Kafka是什么,以及如何使用SpringBoot对接Kafka
架构必备能力——kafka的选型对比及应用场景
Kafka存取原理与实现分析,打破面试难关
防止消息丢失与消息重复——Kafka可靠性分析及优化实践


在这里插入图片描述
我们前面介绍了很多kafka本身的特性与设计,也说了不少原理性的内容,本次我们稍微放松一下,来介绍一下 Kafka的一个重要组件—— Kafka Stream

📕作者简介:战斧,从事金融IT行业,有着多年一线开发、架构经验;爱好广泛,乐于分享,致力于创作更多高质量内容
📗本文收录于 kafka 专栏,有需要者,可直接订阅专栏实时获取更新
📘高质量专栏 云原生、RabbitMQ、Spring全家桶 等仍在更新,欢迎指导
📙Zookeeper Redis dubbo docker netty等诸多框架,以及架构与分布式专题即将上线,敬请期待


一、Kafka Stream是什么

1. 简介

Kafka Stream是 Apache Kafka 的一个子项目,它提供了一种简单而快速的方法来对数据流进行处理,是一种无状态的流处理引擎,可以消费Kafka中的数据并将其转换为输出流。Kafka Stream不像其他流处理工具,它是一个Java库,能够快速构建、部署和管理数据流处理任务。

在这里插入图片描述

我们在前面的文章中《Kafka是什么,以及如何使用SpringBoot对接Kafka》 初步接触了kafka的客户端kafka client,当时如果有眼尖的同学应该也注意到了,在使用Spring Initializr创建项目时,就看见了Kafka Stream的身影

在这里插入图片描述

那么Kafka Stream 与 我们当时接触的 Kafka client 有什么联系吗?其实它们的共同点在于他们都是与Kafka集成的API,从逻辑层次来说,Kafka Stream 是建立在 Kafka client 上的,我们在引用 Kafka Stream 时, 其会自带着 Kafka client 的包,如下:

在这里插入图片描述

那它们的作用到底哪不一样呢?具体来说,它们的不同之处可从这几个方面看:

  • 功能不同
    Kafka Stream是用于流处理任务的API,它提供了一种简单而快速的方法来对数据流进行处理。相反,Kafka Client主要用于生产和消费Kafka消息

  • 处理方式不同
    Kafka Client主要依赖于订阅和轮询来消费Kafka消息。而Kafka Stream依赖于数据流的处理,它会自动将Kafka消息转化为数据流,并实时处理这些数据

  • API调用方式不同
    在Kafka Stream中,您需要定义一个拓扑结构,描述如何将输入流转换成输出流,并执行转换。而在Kafka Client中,您需要调用API来发送和接收Kafka消息

  • 应用场景不同
    Kafka Stream适用于实时数据分析、实时预测等需要流处理的场景。而Kafka Client更适用于异步数据传输的场景,例如日志收集、事件处理等。

2. 特点

我们前面说过,流处理引擎做的人也是很多的,常见的比如说Apache FlinkApache Spark StreamingApache Storm 以及阿里参考 Apache Storm 开发的Jstorm。既然有如此多的可选项,为什么还有Kafka Stream这个东西呢?其实说来也简单,就是应用简单+功能丰富

在这里插入图片描述
总计来说,其具备以下特点:

  1. 无需额外征用集群资源
    在传统的流处理中,需要单独的集群进行数据处理,这就意味着需要额外的开销。而Kafka Stream是直接在Kafka集群上执行的,不会征用额外的资源。

  2. 易于使用
    Kafka Stream提供了简单易用的API,使得开发人员可以快速地进行流处理任务的开发。它还支持Java 8中的Lambda表达式,使得代码更加简洁。

  3. 支持丰富的转换操作
    Kafka Stream支持丰富的转换操作,包括过滤、映射、聚合等。这些操作可以被组合使用,以满足不同的处理需求。

二、流程与核心类

1. KStream 和 KTable 概念

我们上面简要介绍了下Kafka Stream的特点。但是,要想明白其流程并正确使用,我们还需要讲两个核心概念,也就是KStreamKTable

  • KStream
    KStream是一个持续不断的流数据记录,每个记录都是一个key-value对,可以被读取、写入和转换。通常,KStream用于处理实时数据流,我们可以直接从kafka集群中指定主题来获取源源不断的数据

  • KTable
    KTable顾名思义,可以看作是一张持久化的、可查询的、支持状态更新的表格。它通常是利用KStream的数据经过一系列转换和聚合操作生成的,KTable可以被读取和更新,但不能被删除。

KStream和KTable是互补的。KStream可以转换成KTable,也可以从KTable中获取值;KTable也可以转换成KStream,我们可以使用下图,看一下是如何针对数据流中,出现的单词进行计数并”落表“的:
在这里插入图片描述

当然,我们还有必要提及一下GlobalKTable,它是一种特殊的KTable,GlobalKTable通常用于处理比较静态的全局数据,例如维护一个全局的用户信息表,而且只在应用程序启动时从Kafka主题中加载所有数据,这意味着需要消耗较大的内存空间。

2. 常用逻辑与转换

我们上面说了KStreamKTable ,在代码里其实也对应了两个类,那这两个类都有些什么方法呢?最重要的,我们想知道,它们是如何互相转换的。

其实关于 KStream ,可能有些同学会想到JDK 里的 Stream ,因为确实很多方法是一致的,所以不用慌张。我们先来介绍下 KStream 的常用方法:

  • filter:过滤数据流中不符合条件的记录。
  • map:将每个记录转换为一个新的记录,可以改变记录的key和value。
  • flatMap:与map类似,可以将一个记录转换为多个新的记录。
  • mapValues:与map类似,但记录的键保留不变,只改变值
  • groupByKey:将记录按key进行分组,生成一个KGroupedStream对象,可以用于聚合操作。
  • reduce:对KGroupedStream对象进行聚合操作。
  • join:将两个KStream对象进行join操作,生成一个新的KStream对象。
  • windowed:对KStream对象进行窗口操作,可以使用时间窗口或大小窗口。
  • aggregate:将当前流中的记录聚合,并生成一个新的KTable。与reduce方法不同,aggregate方法不仅考虑当前记录,还考虑之前记录的聚合结果
  • to:将结果输出到输出主题中

我们举一个小代码段来看下这些方法的使用

KStream<String, String> input = ...;
// 使用filter方法过滤出包含"important"的值
KStream<String, String> filtered = input
    .filter((key, value) -> value.contains("important"))
// 使用mapValues方法将每个值的长度作为新值。
KStream<String, Integer> mapped = filtered
    .mapValues(value -> value.length());
// 使用groupBy方法将键值对按键分组,并使用count方法计算每个键出现的次数,将结果存储在KTable中
KTable<String, Integer> counted = mapped
    .groupBy((key, value) -> key)
    .count(Materialized.as("counts"));
// 使用selectKey方法选取值中"-"前的部分作为新键
KStream<String, String> rekeyed = input
    .selectKey((key, value) -> value.split("-")[0]);
// 使用leftJoin方法将两个KStream进行左连接,即mapped流和rekeyed流进行连接,
// 连接的条件是两个流中的键相等。连接函数的定义是将两个整型值相加,并将结果作为连接后的流的值
KStream<String, Integer> joined = mapped
    .leftJoin(rekeyed, (value1, value2) -> value1 + value2);
// 使用groupByKey方法对键值对按键分组,并使用windowedBy方法将窗口大小设置为5分钟,
// 然后使用count方法计算每个键在此时间窗口中出现的次数,最后使用toStream方法将结果
// 转换为KStream类型并将时间窗口的起止时间设置为键,值设置为次数
KStream<String, Long> windowed = input 
    .groupByKey()
    .windowedBy(TimeWindows.of(Duration.ofMinutes(5)))
    .count()
    .toStream()
    .map((key, value) -> new KeyValue<>(key.key(), value));
// 将结果输出到输出主题中
windowed.to("output-topic");

而关于KTable,也有一些常用方法,如下:

  • filter:根据指定的谓词过滤记录,并返回一个新的KTable。谓词是一个接受key和value作为参数的函数,如果返回true,则保留该记录,否则过滤掉。
  • mapValues:对KTable中的每个value执行指定的转换函数,并返回一个新的KTable。
  • groupBy:根据指定的key进行分组,并返回一个KGroupedTable对象,该对象用于执行各种聚合操作。
  • join:将当前KTable与另一个KTable或KStream进行连接,并返回一个新的KTable。
  • toStream:将KTable转换为KStream,并返回一个新的KStream对象。

我们也写一小段代码用于演示:

// 从输入流中建立一个KTable
StreamsBuilder builder = new StreamsBuilder();
KTable<String, String> myKTable = builder.table("input-topic", Materialized.as("ktable-store"));

// 1. 执行一些过滤操作,保留包含特定前缀的键
KTable<String, String> filteredKTable = myKTable.filter((key, value) -> key.startsWith("prefix"));

// 2. 执行mapValues操作,将每个键值对中的value进行大写转换
KTable<String, String> uppercasedKTable = myKTable.mapValues(e -> e.toUpperCase());

// 3. 执行groupBy操作,将键值对按照key的前缀分组
KTable<String, String> groupedKTable = myKTable.groupBy((key, value) -> KeyValue.pair(key.split("_")[0], value))
        .reduce((aggValue, newValue) -> aggValue + "_" + newValue);

// 4. 执行leftJoin操作,将两个KTable进行连接,如果某一个KTable中没有该key,则用null进行填充
KTable<String, String> leftJoinedKTable = myKTable.leftJoin(filteredKTable,
        (value1, value2) -> value1 + "-" + value2);

// 5. 执行toStream操作,将KTable转换为KStream类型
myKTable.toStream().map((key, value) -> KeyValue.pair(key, value.toUpperCase()));

当然,关于上述哪些方法,我们也可以用一张图来概括它们之间的转换关系,如下图,其中的 KGroupedStream 和 KGroupedTable 其实就是KStream 和 KTable 进行聚合操作后的产物
在这里插入图片描述

三、使用场景与Demo

1. 实时数据分析

Kafka Stream可以将实时到达的数据进行处理,以便进行实时数据分析。在这种情况下,Kafka Stream通常会将数据转换为一些有用的信息,以便于更好的理解数据,我们可以举一个简单的示例demo

假设我们有一个数据流,其中包含电影评分信息和电影相关信息。我们的任务是计算出每个电影的平均评分。

首先,我们需要定义输入数据流所需的数据结构。假设我们的数据结构如下:

@Data
public class MovieRating {
    private String movieId;
    private float rating;
}

@Data
public class Movie {
    private String movieId;
    private String title;
}

接下来,我们需要编写Kafka流应用程序。我们可以将其分为三个步骤:

1.从Kafka主题读取电影评分和电影相关信息。
2.以电影ID为键,将电影评分聚合到一个窗口中,并计算平均值。
3.将结果写入新的Kafka主题。

public static void main(String[] args) throws Exception {
    Properties props = new Properties();
    props.put(StreamsConfig.APPLICATION_ID_CONFIG, "movie-ratings-app");
    props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
    props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass());
    props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, SpecificAvroSerde.class);

    final StreamsBuilder builder = new StreamsBuilder();

    // 步骤1:从kafka主题中读取电影信息及评分
    // 我们假设主题包含Avro编码的数据
    KStream<String, MovieRating> ratings = builder.stream("movie-ratings");
    KStream<String, Movie> movies = builder.stream("movies");

    // 步骤2: 按电影ID聚合评分并计算平均评分.
    KTable<Windowed<String>, Double> averageRatings = ratings
        .groupBy((key, value) -> value.getMovieId())
        .windowedBy(TimeWindows.of(Duration.ofMinutes(10)))
        .aggregate(
            () -> new RatingAggregate(0.0, 0L),
            (key, value, aggregate) -> new RatingAggregate(aggregate.getSum() + value.getRating(), aggregate.getCount() + 1),
            Materialized.with(Serdes.String(), new RatingAggregateSerde())
        )
        .mapValues((aggregate) -> aggregate.getSum() / aggregate.getCount())
        .toStream()
        .groupByKey()
        .windowedBy(TimeWindows.of(Duration.ofMinutes(10)))
        .reduce(
            (value1, value2) -> Math.max(value1, value2),
            Materialized.with(Serdes.String(), Serdes.Double())
        )
        .toStream()
        .map((key, value) -> new KeyValue<>(key.key(), value));

    // 步骤3: 将结果写入一个新的kafka主题.
    averageRatings.to("average-ratings");

    final KafkaStreams streams = new KafkaStreams(builder.build(), props);
    streams.start();
}

// 用于聚合评分的辅助类
public static class RatingAggregate {
    private double sum;
    private long count;

    public RatingAggregate(double sum, long count) {
        this.sum = sum;
        this.count = count;
    }

    public double getSum() {
        return sum;
    }

    public long getCount() {
        return count;
    }
}

// 序列化与反序列化.
public static class RatingAggregateSerde extends Serdes.WrapperSerde<RatingAggregate> {
    public RatingAggregateSerde() {
        super(new JsonSerializer<>(), new JsonDeserializer<>(RatingAggregate.class));
    }
}


在上面的代码中,我们使用Serdes.String()和SpecificAvroSerde来序列化和反序列化字符串和Avro-encoded对象。我们使用TimeWindows.of(Duration.ofMinutes(10))定义大小为10分钟的窗口。我们使用RatingAggregate类来辅助计算每个电影的平均评分,RatingAggregateSerde类来序列化和反序列化RatingAggregate对象

2. 实时预测

Kafka Stream可以用于实时预测任务,例如在一些应用中,需要根据实时到达的数据来进行预测。Kafka Stream可以使用已有的模型,对实时数据进行预测,从而实现实时的推荐或预测等功能。

还是拿电影举例,我们经常可以看到电影票房的预测,我们可以以此写一个Demo

public class MovieProcessor {

    private static final String INPUT_TOPIC = "box-office-input";
    private static final String OUTPUT_TOPIC = "box-office-output";

    public static void main(String[] args) {

        // 创建 Kafka Streams 配置
        Properties props = new Properties();
        props.put(StreamsConfig.APPLICATION_ID_CONFIG, "box-office-predictor");
        props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
        props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass().getName());
        props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass().getName());

        // 创建 Kafka Streams
        StreamsBuilder builder = new StreamsBuilder();
        KStream<String, String> inputStream = builder.stream(INPUT_TOPIC);

        // 将上映日期转换为毫秒数,并计算出预测票房
        KTable<Long, Double> boxOfficePrediction = inputStream
                .mapValues(new ValueMapper<String, Double>() {
                    @Override
                    public Double apply(String value) {
                        String[] fields = value.split(",");
                        long releaseDateMillis = LocalDate.parse(fields[1]).toEpochDay() * 24 * 60 * 60 * 1000;
                        int runtime = Integer.parseInt(fields[2]);
                        double boxOffice = Double.parseDouble(fields[3]);
                        double prediction = boxOffice / (runtime * 60 * 1000.0) * (releaseDateMillis - System.currentTimeMillis());
                        return prediction > 0 ? prediction : 0;
                    }
                })
                .groupBy(new KeyValueMapper<String, Double, Long>() {
                    @Override
                    public Long apply(String key, Double value) {
                        return 1L;
                    }
                })
                .reduce(new Reducer<Double>() {
                    @Override
                    public Double apply(Double value1, Double value2) {
                        return value1 + value2;
                    }
                })
                .mapValues(new ValueMapper<Double, Double>() {
                    @Override
                    public Double apply(Double value) {
                        return value / (24 * 60 * 60 * 1000.0);
                    }
                });

        // 将预测结果发送到 Kafka Topic 中
		boxOfficePrediction.toStream().to("prediction");

        // 启动 Kafka Streams
        KafkaStreams streams = new KafkaStreams(builder.build(), props);
        streams.start();
    }
}

四、总结

今天我们学了一些关于Kafka Stream的内容太,知道了它是一种流处理引擎,可以消费Kafka中的数据,进行处理后,还能其转换为输出流。它特点在于不需要额外征用集群资源、易于使用、支持丰富的转换操作。使用场景包括实时数据分析、实时预测等。但其实Kafka Stream的内容还是很多的,我们将在后面的学习中继续讲解

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/154085.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

一文看懂TikTok养号

随着国内抖音红利的进一步释放&#xff0c;越来越多人涌入了TikTok国内外市场。而TikTok作为海外新兴的社媒平台&#xff0c;也在迅速的发展着&#xff0c;吸引了大批的跨境电商玩家入驻。然而&#xff0c;TikTok运营的一大难点就是养号&#xff0c;许多人还没开始转化号就被封…

【flink理论】动态表:关系查询处理流的思路:连续查询、状态维护;表转换为流需要编码编码

文章目录 一. 使用关系查询处理流的讨论二. 动态表 & 连续查询(Continuous Query)三. 在流上定义表1. 连续查询2. 查询限制2.1. 维护状态2.2. 计算更新 四. 表到流的转换1. Append-only 流2. Retract 流3. Upsert 流 本文主要讨论了&#xff1a; 讨论通过关系查询处理无界流…

ASP.NET限流器的简单实现

一、滑动时间窗口 我为RateLimiter定义了如下这个简单的IRateLimiter接口&#xff0c;唯一的无参方法TryAcquire利用返回的布尔值确定当前是否超出设定的速率限制。我只提供的两种基于时间窗口的实现&#xff0c;如下所示的基于“滑动时间窗口”的实现类型SliddingWindowRateL…

4. hdfs高可用集群搭建

简介 前面把hadoop机器已经准备好了&#xff0c;zk集群搭建好了&#xff0c;本本就是开始搭建hdfs环境 hadoop环境准备 创建hadoop用户 三台机器都创建hadoop用户 useradd hadoop -d /home/hadoop echo "1q1w1e1r" | passwd --stdin hadoophadoop用户相互免密登…

【Spring】Spring中的DI(依赖注入)Dependence Import

由之前的IoC可以知道&#xff0c;我们写在具体对象后面的new方法肯定不能要了&#xff0c;这时候就要通过依赖注入的形式将Dao配置到Service中 Dependence Import的步骤如下&#xff1a; 1. 在Service类中给Dao提供setter方法 原本我们是直接给bookDao new了一个对象 public …

论文3写作技巧

目录 ⼩论⽂怎么写1 定位⽬标期刊2 写⼩论⽂的核⼼&#xff1a;模仿 ⼩论⽂怎么写 1 定位⽬标期刊 2 写⼩论⽂的核⼼&#xff1a;模仿

JS-项目实战-新增水果库存功能实现

1、fruit.js function $(name) {if (name) {//假设name是 #fruit_tblif (name.startsWith("#")) {name name.substring(1); //fruit_tblreturn document.getElementById(name);} else {return document.getElementsByName(name); //返回的是NodeList类型}} }//当…

HDRP图形入门:RTHandle未知问题

正好电脑看奥本海默&#xff0c;全程尿点十足&#xff0c;就一边看一边把之前整合HDRP遇到的问题说一下。 那就是RTHandle的未知问题&#xff0c;这是官方对RTHandle的说明&#xff1a; unity RTHandle 源代码如下&#xff1a; using System.Collections.Ge…

04-快速掌握Redis,了解Redis中常见的结构类型及其应用场景

Redis快速入门 Remote Dctionary Server Redis是用C语言开发的一个开源的、基于内存的(高性能)键值对(key-value)结构化NoSql数据库,每秒内查询次数可以达到100000的QPS 键值型: Redis中存储的数据都是以key、value对的形式存储&#xff0c;而value的形式多种多样(如字符串、…

2023年第九届数维杯国际大学生数学建模挑战赛A题

2023年第九届数维杯国际大学生数学建模挑战赛正在火热进行&#xff0c;小云学长又在第一时间给大家带来最全最完整的思路代码解析&#xff01;&#xff01;&#xff01; A题思路解析如下&#xff1a; 完整版解题过程及代码&#xff0c;稍后继续给大家分享~ 更多题目完整解析点…

SpringCloud微服务:Nacos的集群、负载均衡、环境隔离

目录 集群 在user-service的yml文件配置集群 启动服务 负载均衡 order-service配置集群 设置负载均衡 当本地集群的服务挂掉时 访问权重 环境隔离 1、Nacos服务分级存储模型 一级是服务&#xff0c;例如userservice 二级是集群&#xff0c;例如杭州或上海 …

【AI视野·今日Sound 声学论文速览 第三十三期】Wed, 25 Oct 2023

AI视野今日CS.Sound 声学论文速览 Wed, 25 Oct 2023 Totally 8 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Sound Papers CDSD: Chinese Dysarthria Speech Database Authors Mengyi Sun, Ming Gao, Xinchen Kang, Shiru Wang, Jun Du, Dengfeng Yao, Su Jing W…

jQuery【事件处理器、鼠标事件、表单事件、键盘事件、浏览器事件、事件对象、jQuery遍历】(三)-全面详解(学习总结---从入门到深化)

目录 事件之绑定事件处理器 事件之鼠标事件 事件之表单事件 事件之键盘事件 事件之浏览器事件 事件对象 jQuery遍历 事件之绑定事件处理器 1、 .on() 在选定的元素上绑定一个或多个事件处理函数 $("#button").on("click", function(event){console…

Android---网络编程优化

网络请求操作是一个 App 的重要组成部分&#xff0c;程序大多数问题都是和网络请求有关。使用 OkHttp 框架后&#xff0c;可以通过 EventListener 来查看一次网络请求的详细情况。一次完整的网络请求会包含以下几个步骤。 也就是说&#xff0c;一次网络请求的操作是从 DNS 解析…

第四代智能井盖传感器:万宾科技智能井盖位移监测方式一览

现在城市化水平不断提高&#xff0c;每个城市的井盖遍布在城市的街道上&#xff0c;是否能够实现常态化和系统化的管理&#xff0c;反映了一个城市治理现代化水平。而且近些年来住建部曾多次要求全国各个城市加强相关的井盖管理工作&#xff0c;作为基础设施重要的一个组成部分…

Python windows安装Python3环境

程序员的公众号&#xff1a;源1024&#xff0c;获取更多资料&#xff0c;无加密无套路&#xff01; 最近整理了一份大厂面试资料《史上最全大厂面试题》&#xff0c;Springboot、微服务、算法、数据结构、Zookeeper、Mybatis、Dubbo、linux、Kafka、Elasticsearch、数据库等等 …

Vue3 自定义hook函数

这个hook函数并不是Vue3 自带的&#xff0c;而是为了方便我们书写和复用代码。 当我们在setup函数中写了很多内容过后&#xff0c;就会变得很乱&#xff0c;所以我们将实现相同功能的数据、方法和生命周期等等打包单独放在一个文件中&#xff0c;就会整洁很多。 例如&#xf…

Linux友人帐之网络编程基础邮件服务器与DHCP服务器

一、邮件服务器概述 1.1邮件服务基础 邮件服务器是一种计算机程序&#xff0c;它通过电子邮件协议接收、存储、处理和发送电子邮件。邮件服务器可以与电子邮件客户端程序&#xff08;如Outlook、Thunderbird等&#xff09;或Web邮件界面&#xff08;如Gmail、Outlook.com等&am…

操作系统OS/存储管理/内存管理/内存管理的主要功能_基本原理_要求

基本概念 内存管理的主要功能/基本原理/要求 **内存管理的主要功能&#xff1a; ** 内存空间的分配与回收。由操作系统完成主存储器空间的分配和管理&#xff0c;使程序员摆脱存储分配的麻烦&#xff0c;提高编程效率。地址转换。在多道程序环境下&#xff0c;程序中的逻辑地…

数字档案室建设评价

数字档案室建设评价应考虑以下几个方面&#xff1a; 1. 安全性&#xff1a;数字档案室的主要目的是确保档案资料的安全性。评价应考虑数字档案室的物理安全性、防火措施、保密措施、网络安全等方面。 2. 可访问性&#xff1a;数字档案室应该易于访问和使用。评价应考虑数字档案…