PMSM矢量控制笔记(1.1)——电机的机械结构与运行原理

前言:

重新整理以前的知识和文章发现,仍然有许多地方没有学得明白,懵懵懂懂含含糊糊的地方多如牛毛,尤其是到了真正实际写东西或者做项目时,如果不是系统的学习了知识,很容易遇到问题就卡壳,也想不到解决的思路。因此现在想从头到尾,从以前刚开始入门的角度再把永磁同步电机的矢量控制再撸一遍,把从电机本体的基础知识,FOC框架内的坐标变换、SVPWM、电流环与转速环PI参数设计、simulink仿真搭建、FOC的C代码实现,直到MTPA、弱磁和观测器类,都从头到尾的再整理一遍,如果时间充足的话,把一些深入点的参数辨识、低速带载性能提升、模型预测、效率优化等也撸一遍。这个过程会比较漫长,将会以笔记的形式在这里与大家分享讨论。

1 电机的机械结构

那就从零开始,从最本源的电机本体知识开始撸起。首当其冲的就是电机的机械结构,这其实是很多做算法设计工程师容易忽略的地方,很多控制算法的设计都是直接对电机的数学模型进行分析,但是如果在刚学习的时候,对机械结构有一定的认知和对实物进行一定的观察,这会对我们的控制对象有一个感官上的认知,这样学习起来就不会是空中楼阁,而是一个踏踏实实的铁疙瘩在你面前等着你控制。多个角度看一下:

永磁同步电机的整体图

永磁同步电机的纵切面图

电机的机壳内侧空间由电机定子绕组占据,定子绕组包裹的内腔为电机转子。相对来说,异步电机、同步电机和永磁同步电机的定子绕组结构上的区别并不大,永磁同步电机与励磁同步电机最大的区别就在于转子构成不同,电励磁同步电机的转子是由转子绕组+铁芯组成,而永磁同步电机的转子是永磁体+铁芯组成,转子上不同位置的极性是由永磁体的极性决定的,且不可改变。当定子绕组上通入交流电,由于通电绕组会产生磁场的物理特性,定子绕组侧会产生一个旋转磁场,由于转子由永磁体构成,则电机就会被定子绕组产生的磁动势带着旋转起来。

永磁同步电机的定子结构

定子结构区别不大,且制作工艺区别也不如转子。其制作工艺关键步骤如下图所示。在定子铁芯上缠绕指定对数的绕组,虽然不同绕组的铜线都缠绕在一起了,但是这些铜线外部都具备特殊的绝缘材料。

永磁同步电机的转子结构

永磁同步电机特殊的转子是由表贴或内置的永磁体+转子铁心组成主体,内腔通过隔磁材料链接主转轴,并且外接轴承等机械结构执行驱动功能。这里有一个区分的点,就是有些转子的永磁体是内嵌在转子铁心中,而有些转子的永磁铁是贴在转子铁心,这是区别凸极永磁同步电机与隐极同步电机的关键点,这个后续会专门出一篇文章讲解凸极电机与隐极电机的区分与区别。假如把永磁同步电机拆开,其实物图就如下图所示,定子绕组与转子的分布非常的清晰,当我们在定子线圈中通入正弦电流产生旋转磁动势时,如果有一双眼睛能够从电机内部观察,那这个原理就更直观了。

2 电机的旋转原理

此部分内容我们主要补充电机运行原理相关的知识,去回答“电机是如何转起来的”问题,为了从源头上去理解电机旋转的原理,我们可以回溯到高中的知识中去,去理解电与磁之间、电能与机械能之间的交替转换。

2.1 安培定则

首先奥斯特在实验中偶然发现的物理定律——安培定则,也叫右手螺旋定则,是表示电流和电流激发磁场的磁感应线方向间关系的定则。安培定则的定义:当导线是直导线时,若大拇指指向电流的方向,四指环握的方向表示磁场方向。当导线为通电螺线管时,若四指环握的方向指向电流方向,则大拇指指向N极性方向。在电机控制中,一般安培定则在螺线管中的应用与电机相关性更大,因为交流电机的绕组实际上就是由一圈圈导线组成;而安培定则在通电直导线中的应用仅在电流采样中才有涉及。

基于安培定则,我们可以想象一下假如有一个永磁体放置在桌子上并且中心被一根钉子固定住,在这个永磁体周围围满了一圈的这样的螺线管,由于N极和S极会相互吸引,N极于N极之间会相互排斥。

基于安培定则,我们可以想象一下假如有一个永磁体放置在桌子上并且中心被一根钉子固定住,在这个永磁体周围围满了一圈的这样的螺线管,由于N极和S极会相互吸引,如果我们依次对从右到左的螺线管进行上电,那么永磁体就会绕着钉子旋转起来。虽然这个假设非常简单,但是实际上复杂的三相交流电机运行过程的本质原理与这个是完全一致的。

2.2 弗莱明左手定则与安培力

左手定则是英国电机工程师约翰·安布罗斯·弗莱明提出的,1885年当弗莱明在英国伦敦大学任教时,由于学生经常弄错磁场、电流和受力的方向,他想出了一个简单的方法帮助同学记忆——左手定则,该定则是判断通电导线处于磁场中时,所受安培力的方向、磁感应强度B的方向以及通电导体的电流I的方向三者之间关系的定律。左手定则一般用于判断通电导体在磁场中受力的方向,如下图所示,让磁感线垂直于手掌并从掌心进入,并使得四指指向电流的方向,则大拇指指向的方向是通电导线在磁场中所受安培力的方向。

安培力是通电导体在磁场中受到的作用力,由法国物理学家安培首先通过实验确定。其文字表述为:以电流强度为I、长度为L的直导线,放置于磁感应强度为B的均匀磁场中,导线受到的安培力大小等于

式中 α 为导线中的电流方向和磁场B方向之间的夹角 ,F、I、B、L的单位分别是N*m、A、T、m 。任意形状的导线都可以通过左手定则判定其在磁场中所受力的方向,同时任意形状的导线都可以看作无穷个直流电流单位在磁场中所受安培力的矢量和值。

2.3 有刷直流电机的运行原理

在学习复杂的三相交流电机的旋转原理前,有必要对结构相对简单的直流电机原理进行补充。有刷直流电动机的运行原理与安培定则、安培力息息相关,上两小节的讲解就是为了方便大家理解此部分的内容。(此小节部分内容主要借鉴www.pengky.cn内直流电机相关内容)如图下左图所示,这是一个方形的导线框,在线端头焊接有两片半圆周形状的铜片,两个铜片中间的褐色部分是绝缘或中空的,该部分被称为换向器。若在两个半圆周形状的铜片两侧夹上一对固定不动的弹性铜片,则可通过弹性铜片为矩形线框供电,两个弹性铜片被称为电刷,如下右图所示。

进一步的对结构进行组装,若在两个弹性铜片——电刷上通入直流电,则线框中就会产生电流。如下左所示。通入直流电后,在导线框中就出现了如图中绿色箭头所示的直流电,此时外部还不存在任何的磁场,导线圈处于短路运行中。若在通入直流电后,在矩形线框的周围加入一个外部磁场,导线框就会因安培力产生运动趋势。如图下右图所示,在线框的两侧放置一对磁极,形成磁场,由于线框内导线已存在直流电流,两侧导线就会受到磁场的作用力,其受力方向依据左手定则进行判断,如下右图所示。

图中直流电源红色为正极,绿色为电源负极,导线旁的红色箭头为电流方向。通过左手定则可知,矩形线圈左侧部分导线在磁场中所受安培力的方向是垂直向上的,矩形线圈右侧部分导线在磁场中所受安培力的方向是垂直向下的,在两端安培力的作用下,通电矩形线框就会绕着换向器的圆心开始旋转。其动态图大家可上鹏梵科技官网查询。

上面的讲解仅仅说明了矩形线框在磁场中受力的情况,以及运动趋势的产生,但是如何实现持续的旋转,还是比较模糊的。因此针对这个视频讲解一下直流电动机是如何持续运行起来的,如下图所示的3个暂态,第一个暂态:矩形线框平面与磁感应线方向处于平行状态,该状态矩形线框受到左侧向上、右侧向下的安培力,矩形线框出现旋转趋势;第二个暂态:磁感应线恰好垂直穿过矩形线框,此时左右两侧电刷正好与绝缘部分相连,此时矩形线框中不存在任何电流,线框不受力,但由于从第一个暂态到第二个暂态过程中矩形线框会经历旋转加速的过程,虽然到第二个暂态时线框中不存在电流,也不受到力的作用,但旋转的惯性会使得矩形线框冲过中间“无电”且“不受力”的状态进入暂态三,;第三个暂态:矩形线框重新与电刷相连,并在直流电源的作用下重新出现电流。由于线框仍然处在磁场中,则线框两侧继续收到安培力的作用继续旋转。

其中一个非常巧妙的机构就是换向器和电刷,我们可以看到第一个暂态中左侧线框的电流是由纸面内往直面外流,在冲过无电的第二暂态后,原本左侧的线框进入右侧,此时导线内电流方向是从纸面外流向纸面内,对这段导线而言,他的电流方向是在此次旋转中出现“换向”。正是这段换向操作,使得矩形线框能够持续保持左侧受力向上,右侧受力向下的状态,因这种受力状态的保持,矩形线框则会绕着换向器的圆心保持一个方向持续运行,这也是换向器名称的由来。

虽然这些操作非常的原始,但是在科技不那么发达的年代,在法拉第发现电磁感应现象后,能够奇思妙想出换向器与电刷的结构,使得通电导线能够持续旋转的操作,实属是天才的灵光,我们应该记住这个人的名字——托马斯·达文波特(Thomas Davenport),是他首先提出和建立了能够转动和机械换向的直流电机。正是直流电机的推广和应用,才让人们对这种电能产生机械能的装置产生了信任和以来,也为后续交流电机的出现打下坚实的基础。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/1536.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C语言的灵魂---指针(基础)

C语言灵魂指针1.什么是指针?2.指针的大小3.指针的分类3.1比较常规的指针类型3.2指针的解引用操作3.3野指针野指针的成因:4.指针运算4.1指针加减整数4.2指针-指针1.什么是指针? 这个问题我们通常解释为两种情况: 1.指针本质&#…

Unity学习日记13(画布相关)

目录 创建画布 对画布的目标图片进行射线检测 拉锚点 UI文本框使用 按钮 按钮导航 按钮触发事件 输入框 实现单选框 下拉菜单 多选框选项加图片 创建画布 渲染模式 第一个,保持画布在最前方,画布内的内容显示优先级最高。 第二个,…

GitHub 上有些什么好玩的项目?

前言 各个领域模块的都整理了一下,包含游戏、一些沙雕的工具、实用正经的工具以及一些相关的电商项目,希望他们可以给你学习的路上增加几分的乐趣,我们直接进入正题~ 游戏 1.吃豆人 一款经典的游戏开发案例,包括地图绘制、玩家控…

并发基础之线程池(Thread Pool)

目录前言何为线程池线程池优势创建线程池方式直接实例化ThreadPoolExecutor类JUC Executors 创建线程池线程池挖掘Executors简单介绍ThreadPoolExecutor核心类ThreadPoolExecutor 类构造参数含义线程池运行规则线程设置数量结语前言 相信大家都知道当前的很多系统架构都要求高…

echart图表之highcharts

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录前言一、HighCharts是什么?二、使用步骤1.引入库2.前端代码3.展现结果4.后台自动截图总结前言 提示:这里可以添加本文要记录的大概内容&…

linux kernel 5.0 inline hook框架

github:https://github.com/WeiJiLab/kernel-hook-framework 一、项目介绍 Usually we want to hack a kernel function, to insert customized code before or after a certain kernel function been called, or to totally replace a function with new one. How can we…

计算机图形学11:二维观察之多边形的裁剪

作者:非妃是公主 专栏:《计算机图形学》 博客地址:https://blog.csdn.net/myf_666 个性签:顺境不惰,逆境不馁,以心制境,万事可成。——曾国藩 文章目录专栏推荐专栏系列文章序一、多边形的裁剪…

Activity工作流(三):Service服务

3. Service服务 所有的Service都通过流程引擎获得。 3.1 RepositoryService 仓库服务是存储相关的服务,一般用来部署流程文件,获取流程文件(bpmn和图片),查询流程定义信息等操作,是引擎中的一个重要的服务。…

Anaconda配置Python新版本tensorflow库(CPU、GPU通用)的方法

本文介绍在Anaconda环境中,下载并配置Python中机器学习、深度学习常用的新版tensorflow库的方法。 在之前的两篇文章基于Python TensorFlow Estimator的深度学习回归与分类代码——DNNRegressor(https://blog.csdn.net/zhebushibiaoshifu/article/detail…

【C++学习】日积月累——SLT中stack使用详解(1)

一、stack的相关概念 stack是一种容器适配器,专门用在具有后进先出的上下文环境中,其删除只能从容器的一端进行元素的插入与提取操作; stack是作为容器适配器被实现的,容器适配器即是对特定类封装作为其底层的容器,并提…

图形视图框架的坐标

图形视图基于笛卡尔坐标系;项目在场景中的位置和几何图形由两组数字表示:X 坐标和 Y 坐标。使用未变换的视图观察场景时,场景上的一个单元由屏幕上的一个像素表示。 图形视图中有三种有效的坐标系: 项目坐标场景坐标视图坐标为了简化实现图形…

opencv仿射变换之获取变换矩阵

大家好,我是csdn的博主:lqj_本人 这是我的个人博客主页: lqj_本人的博客_CSDN博客-微信小程序,前端,python领域博主lqj_本人擅长微信小程序,前端,python,等方面的知识https://blog.csdn.net/lbcyllqj?spm1011.2415.3001.5343哔哩哔哩欢迎关注…

JavaSe第10次笔记

1.Java中,static不能修饰局部变量。 2.构造代码块:可用于成员变量的赋值,但需要注意的是,构造代码块最先执行(比构造方法先)。 3.静态代码块(可用于静态成员变量赋值):写法如下 static { 静态成员操作; } (比构造…

Python逆向及相关知识

今天第二次看见python字节码的逆向题,然后发现了一个介绍Python逆向的文章,所以把文章里的内容简单整理记录一下。 文章参考:https://www.cnblogs.com/blili/p/11799398.html Python运行原理: 一.什么是Python Python 是一种解…

ChatGPT加强版GPT-4面世,打工人的方式将被颠覆

🔗 运行环境:chatGPT,GPT-4 🚩 撰写作者:左手の明天 🥇 精选专栏:《python》 🔥 推荐专栏:《算法研究》 #### 防伪水印——左手の明天 #### 💗 大家好&#…

推荐一款卸载软件的小工具-《UninstallToo》

目录 UninstallToo介绍 UninstallToo下载 UninstallToo使用 总结 UninstallToo介绍 Uninstall Tool 是一款可以用来替代“添加/删除程序”的工具。它允许您显示隐藏的安装程序,按名称过滤已安装程序的列表,强行写在程序,浏览注册表项目&a…

【Vue】Vue的安装

🏆今日学习目标:Vue3的安装 😃创作者:颜颜yan_ ✨个人格言:生如芥子,心藏须弥 ⏰本期期数:第一期 🎉专栏系列:Vue3 文章目录前言Vue3安装独立版本CDN安装第一个Vue程序总…

元数据管理实践数据血缘

元数据管理实践&数据血缘 什么是元数据?元数据MetaData狭义的解释是用来描述数据的数据,广义的来看,除了业务逻辑直接读写处理的那些业务数据,所有其它用来维持整个系统运转所需的信息/数据都可以叫作元数据。比如…

训练自己的GPT2-Chinese模型

文章目录效果抢先看准备工作环境搭建创建虚拟环境训练&预测项目结构模型预测续写训练模型遇到的问题及解决办法显存不足生成的内容一样文末效果抢先看 准备工作 从GitHub上拉去项目到本地,准备已训练好的模型百度网盘:提取码【9dvu】。 gpt2对联训…

10.0自定义SystemUI下拉状态栏和通知栏视图(六)之监听系统通知

1.前言 在进行rom产品定制化开发中,在10.0中针对systemui下拉状态栏和通知栏的定制UI的工作开发中,原生系统的下拉状态栏和通知栏的视图UI在产品开发中会不太满足功能, 所以根据产品需要来自定义SystemUI的下拉状态栏和通知栏功能,首选实现的就是下拉通知栏左滑删除通知的部…