11-15 周三 softmax 回归学习

11-15 周三 softmax 回归学习
时间版本修改人描述
2023年11月15日11:17:27V0.1宋全恒新建文档

简介

 softmax分享可以参考什么是softmax

 回归估计一个连续值,分类预测一个离散类别。

 恶意软件的判断

 回归和分类

分类可以认为从回归的单输出变成多输出

B站学习

softmax回归

 使用softmax回归,解决多分类问题,softmax回归模型。

 使用矩阵计算线性输出O

 通过softmax计算概率:

 y值较大的概率属于相应类别的概率更高。

 具体的计算过程如下图:

 总结来说,softmax函数不会改变线性输出o之间的大小顺序,只会为每个类别分配相应的概率。softmax回归模型简介高效,只需要一次就能输出所有类别概率。

 增加新的类别,产生较高的成本,以你为会影响所有的类别的概率。

softmax 回归+ 损失函数 + 图片分类数据集

 均方损失训练。

Softmax

y ^ = a r g m a x o i \widehat { y } = a r g m a x o _ { i } y =argmaxoi

 关注的不是o的输出,而是关注相对距离。

 指数的好处,是具有非负性。

 一般衡量两个概率的区别,使用交叉熵

 对真实类别的预测值,求其-log。

注: 上图是非常关键的,在计算交叉熵的时候,由于对应每个样本只有一个真实类别值为1,其他均为0,这样求和就可以表示为只有预测值的取log后,再取负数即可。

 总结:

  • softmax回归是一个多类分类模型。

  • 使用Softmax操作子得到每个类的预测置信度

  • 使用交叉熵来衡量预测和标号的区别。

损失函数

损失函数是预测值和真实值的区别。

均方损失

1/2是为了求导时处理掉倍数。

 在负梯度方向更新参数。

L1 loss

绿色的线是似然函数。

Hubers Robust Loss

 当我预测值和真实值比较远时候,梯度是比较均匀的力度在靠近

图像数据集

 MNIST数据集是图像分类中广泛使用的数据集之一,但作为数据集过于简单。我们可以使用Fashin-MNIST作为数据集。

 测试数据集用来验证模型的好坏

 几个样本图像及相应的特征

 读取进程数,来读取图像。shuffle,打乱顺序。

 读一次数据要1.72秒。读取数据的速度。

 完整代码,定义load_data_fashion_mnist函数

softmax回归从零开始实现

 将展平每个图像,将它们视为784的向量,数据集一共10个类别,所以网络输出维度为10。

 矩阵求和,维度等于0,将压缩成行详列。按照维度为1,将变成一个列向量。

 实现softmax。

注: 对一个矩阵求softmax,相当于对其中的每一行求softmax,因为行数其实相当于样本数量了。也就是按照维度为1进行计算。

 上述广播机制的含义是用矩阵的第i行,除以partition向量中的第i个值。

第一行是生成一个均值为0,方差为1的2行5列的矩阵。

由结果,可以看出,每行的和为1,而且都是为正值。

 计算交叉熵

 其中[0.1, 0.3, 0.6]是第一个样本的预测值。 y则表示两个样本的真实标签,第一个样本真实标签为0, 第二样本真实标签为2.

拿出0号样本和1号样本对应真实标签的预测值。y[1]为2,代表真实标签为2,然后取出预测为2的概率,即0.5。稍微有一点绕。在y_hat[[0,1], y]中[0, 1]代表了序号,即y向量中0号位和1号位的值,代表了真实的标签。y_hat则表示了对应这些类别的预测值。

 实现交叉熵损失函数

 计算预测准确的

 找出预测正确的样本数。

 任意模型在数据迭代器的准确率

 累加器

 softmax回归的训练

进行预测

softmax简介实现

总结

 softmax基本上是在多分类问题中,将输出概率化的操作子。在神经网络中,作为最后一层进行的。其中交叉熵的理解反而不太好。

cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=layer_fc2, labels=y_true)
cost = tf.reduce_mean(cross_entropy)
optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cost)
correct_prediction = tf.equal(y_pred_cls, y_true_cls)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
session.run(tf.global_variables_initializer())

上述为在TF中使用交叉熵来获取准确率的样例代码,可以看到correct_prediction为一组向量[True, False, False, …]强制转化为tf.float32之后求平均,就相当于求出了准确率。

 上图理解的关键是损失函数,其中y = [0, 0, …, 1, 0, 0]只有一个1,其他全为0,为1的索引为真实的类别标签。而y_hat = [0.1, 0.1, …, 0.3, 0.1, 0.1]都是一组预测的概率,这样在计算时,只要去取真实标签的预测值求-log即可得到该样本的损失。这相当于一个样本的误差。

 不懂的东西太多了,之后买一本《动手学深度学习》好好看吧

最近有的时候很恐慌,因为在我的组里优秀的人很多,大家都在写论文什么的,自己呢深度学习比较浅显,就有点尴尬,其实一种治疗恐慌焦虑的方式就是深刻的意识到,知难则行易,知易则行难。所以别多想了,学就是了,另外如果担心做的贡献少的话,那就有多大能力做多少事情,做自己力所能及的所有事情,不要偷懒,认真学习就好了。2023年就要过去了,希望自己越来越好吧。希望每个读者都能够远离恐慌,规划好自己的人生,不要做错事,走错路,好好享受属于自己的人生。希望每段人生都是充实的,圆满的也。感恩一下。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/151290.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Spring cloud负载均衡@LoadBalanced LoadBalancerClient

LoadBalance vs Ribbon 由于Spring cloud2020之后移除了Ribbon,直接使用Spring Cloud LoadBalancer作为客户端负载均衡组件,我们讨论Spring负载均衡以Spring Cloud2020之后版本为主,学习Spring Cloud LoadBalance,暂不讨论Ribbon…

童装CPC认证检测哪些内容?童装上架亚马逊美国站CPC认证办理

童装是指适合儿童穿着的服装。按年龄分,包括婴儿服装、儿童服装、童装、中年童装、大童服装。CPC认证即儿童产品证书(CPC),主要针对12岁以下的儿童,如玩具、摇篮、童装等。跨境卖家作为“进口商”,想要将中…

差分信号的末端并联电容到底有什么作用?

差分信号的末端并联电容到底有什么作用? 在现代电子系统中,差分信号是一种常见的信号形式,它们通过两根互补的信号线传输信号,具有较低的噪声和更高的抗干扰能力。然而,当差分信号线长度较长或者遇到复杂的电路环境时&…

服务器监控及其监控工具

随着互联网技术的不断发展,服务器成为现代企业中不可或缺的一环。对于很多企业来说,服务器故障会给公司的日常工作和财务带来不小的影响。这时,服务器监控成为了保障服务器高效安全运行的一项重要工作。有许多监控工具可以帮助我们更好地监控…

cleer的耳机怎么样?南卡和cleer哪个好?两款开放式耳机深度横评对比

随着开放式耳机的发展,成为许多用户的首选。开放式耳机因其更自然的音质表现和佩戴更舒适体验而备受欢迎。然而,市面上开放式耳机品牌和型号繁多,如何选择一款适合自己的耳机成为了许多用户的难题。 本期文章将为大家推荐两款市面上优秀的开…

VS2022配置wxWidgets 3.0.5

Downloads - wxWidgets下载Windows ZIP 解压进入E:\SoftWare\wxWidgets-3.0.5\build\msw,用VS2022打开wx_vc12.sln,选择生成——批生成,最终生成一些文件 打开VS2022,新建属性表,在属性表里设置: c——常规…

OpenCV的应用——快递二维码识别

OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉库,它提供了丰富的图像处理和计算机视觉算法,可用于实现图像识别、目标检测、图像分割等功能。在现代物流行业中,快递二维码识别是一项非常重要的任…

STM32F103C8T6硬件spi读取ADS1118

硬件SPI读取ADS1118 文章目录 硬件SPI读取ADS1118前言一、ADS1118技术手册二、SPI的配置1.spi.c和.h的配置2.ads1118.c3.ads1118.h 总结 前言 现在要用到SPI去读取数据,读取的芯片是ADX的一款,但是和ADS1118是一模一样的 分享一下读取的过程 一、ADS11…

基于纵横交叉算法优化概率神经网络PNN的分类预测 - 附代码

基于纵横交叉算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于纵横交叉算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于纵横交叉优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神…

Freeswitch中CHANNEL_UNHOLD取回事件

1. CHANNEL_UNHOLD取回事件 2023-11-15T09:18:45.3740800 INFO c.e.c.v.s.c.i.FsServerEventHandler - eventReceived:CHANNEL_UNHOLD 2023-11-15T09:18:45.3740800 INFO c.e.c.v.s.c.i.FsServerEventHandler - EventBody********:{variable_effective_caller_id_number1000,…

【开源】基于微信小程序、Vue和SpringBoot的智慧家政系统

项目编号: S 063 ,文末获取源码。 \color{red}{项目编号:S063,文末获取源码。} 项目编号:S063,文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块三、系统展示四、核心代码4.1 查询家政服…

上海亚商投顾:沪指震荡反弹 汽车产业链多股涨停

上海亚商投顾前言:无惧大盘涨跌,解密龙虎榜资金,跟踪一线游资和机构资金动向,识别短期热点和强势个股。 一.市场情绪 指数早间高开后震荡回落,三大股指最终均小幅上涨。汽车产业链持续活跃,华为汽车方向领…

场景图形管理 - (1)

本章主要介绍在场景图形中如何管理场景数据及交互过程,这在实际开发中非常重要。 视图与相机 什么是视图?在《OpenGL编程指南》中有下面的比喻,从笔者开始学习图形学就影响深刻,相信对读者学习场景管理也会非常有帮助。 产生目标场景视图的变…

【JUC】七、读写锁

文章目录 1、读写锁2、读写锁的体验3、读写锁的特点4、锁的演变5、读写锁的降级6、复习:悲观锁和乐观锁 1、读写锁 JUC下的锁包的ReadWriteLock接口,以及其实现类ReentrantReadWriteLock ReadWriteLock 维护了一对相关的锁,即读锁和写锁&…

TikTok对文化艺术的影响:传统与现代的碰撞

在这个数字时代,社交媒体平台不仅改变了我们的社交方式,也对文化和艺术产生了深远的影响。其中,TikTok是一个备受欢迎的应用,已成为传统与现代文化艺术交汇的独特平台。本文将深入探讨TikTok对文化艺术的影响,以及传统…

Freeswitch中CHANNEL_HOLD保持事件

1.CHANNEL_HOLD保持事件 2023-11-15T09:18:42.6920800 INFO c.e.c.v.s.c.i.FsServerEventHandler - eventReceived:CHANNEL_HOLD 2023-11-15T09:18:42.6920800 INFO c.e.c.v.s.c.i.FsServerEventHandler - EventBody********:{variable_effective_caller_id_number1000, , va…

OpenCV必知必会基础3(包括色彩空间的变换、ROI、OpenCV中最重要的结构体Mat以及获取图像的属性)

文章目录 OpenCV的色彩空间——RGB与BGROpenCV的色彩空间——HSV与HSLHSV主要用于OpenCV中HSL OpenCV色彩空间转换YUV主要用于视频中题目 图像操作的基石Numpy【基础操作】np.arraynp.zerosnp.onesnp.fullnp.identitynp.eye Numpy基本操作之矩阵的检索与赋值Numpy基本操作三——…

Kylin-Server-V10-SP3+Gbase+宝兰德信创环境搭建

目录 一、Kylin-Server-V10-SP3 安装1.官网下载安装包2.创建 VMware ESXi 虚拟机3.加载镜像,安装系统 二、Gbase 安装1.下载 Gbase 安装包2.创建组和用户、设置密码3.创建目录4.解压包5.安装6.创建实例7.登录8.常见问题 三、宝兰德安装1.获取安装包2.解压安装3.启动…

黑马程序员微服务 分布式搜索引擎3

分布式搜索引擎03 0.学习目标 1.数据聚合 **聚合(aggregations)**可以让我们极其方便的实现对数据的统计、分析、运算。例如: 什么品牌的手机最受欢迎?这些手机的平均价格、最高价格、最低价格?这些手机每月的销售…

【JavaEE初阶】 HTML基础详解

文章目录 🎋什么是HTML?🍀HTML 结构🚩认识标签🚩HTML 文件基本结构🚩快速生成代码框架 🎄HTML 常见标签🚩注释标签🚩标题标签: h1-h6🚩段落标签: p&#x1f6…