题意:要求找到
不放车就无法达到最大数的点 的个数
题解:1.以行列绘制二分图
2.先算出最大二分匹配数
3.依次遍历所有边
删除该边,并计算二分匹配最大值
(若小于原最大值即为重要点),再恢复该边
以下为AC代码:
#include<string.h>
#include<iostream>
using namespace std;
// 声明棋盘
int map[109][109] = { 0 };
// 限制访问
int visit[109] = { 0 };
// 右侧对象数组
int r[109] = { 0 };
// 声明棋盘行列,棋子个数
int line = 0, row = 0, num = 0;
// 二分匹配
bool find(int x);
// 求最大匹配数
int max1();
// 遍历删除并恢复所有边,求影响最大二分匹配的边
int max2();
// 声明最大二分匹配数
int ans = 0;
// 记录各边左右端点对应的下标
int k = 0;
int main()
{
// 声明棋盘编号
int n = 1;
while (scanf("%d%d%d", &line, &row, &num) != EOF)
{
memset(map, 0, sizeof(map));
for (int i = 0; i < num; i++)
{
int tl = 0, tr = 0;
scanf("%d %d", &tl, &tr);
map[tl][tr] = 1;
}
ans = max1();
printf("Board %d have %d important blanks for %d chessmen.\n", n, max2(), max1());
n++;
}
return 0;
}
// 二分匹配
bool find(int x)
{
// 遍历右侧元素
for (int i = 1; i <= row; i++)
{
// 判断有无边,是否被访问
if (map[x][i] && !visit[i])
{
visit[i] = 1;
if (!r[i] || find(r[i]))
{
r[i] = x;
return 1;
}
}
}
return 0;
}
// 求最大匹配数
int max1()
{
int ans1 = 0;
memset(r, 0, sizeof(r));
for (int i = 1; i <= line; i++)
{
memset(visit, 0, sizeof(visit));
if (find(i))ans1++;
}
return ans1;
}
// 遍历删除并恢复所有边,求影响最大二分匹配的边
int max2()
{
int tans = 0, point = 0;
for (int j = 1; j <= line; j++)
{
for (int i = 1; i <= row; i++)
{
if (map[j][i])
{
tans = 0;
map[j][i] = 0;
tans = max1();
map[j][i] = 1;
if (tans < ans) point++;
}
}
}
return point;
}