【自然语言处理(NLP)实战】LSTM网络实现中文文本情感分析(手把手与教学超详细)

目录

引言:

1.所有文件展示:

1.中文停用词数据(hit_stopwords.txt)来源于:

2.其中data数据集为chinese_text_cnn-master.zip提取出的文件。点击链接进入github,点击Code、Download ZIP即可下载。

2.安装依赖库:

3.数据预处理(data_set.py):

train.txt-去除停用词后的训练集文件:

test.txt -去除停用词后的测试集文件:

4. 模型训练以及保存(main.py)

1.LSTM模型搭建:

2.main.py代价展示 :

 3.模型保存

4.训练结果 

5.LSTM模型测试(test.py) 

 1.测试结果:

2.测试结果:

6.完整代码展示:

1.data_set.py

2.mian.py

3.test.py 


引言:

在当今数字化时代,人们在社交媒体、评论平台以及各类在线交流中产生了海量的文本数据。这些数据蕴含着丰富的情感信息,从而成为了深入理解用户态度、市场趋势,甚至社会情绪的宝贵资源。自然语言处理(NLP)的发展为我们提供了强大的工具,使得对文本情感进行分析成为可能。在这个领域中,长短时记忆网络(LSTM)凭借其能够捕捉文本序列中长距离依赖关系的能力,成为了情感分析任务中的一项重要技术。

本篇博客将手把手地教你如何使用LSTM网络实现中文文本情感分析。我们将从数据预处理开始,逐步构建一个端到端的情感分析模型。通过详细的步骤和示例代码,深入了解如何处理中文文本数据、构建LSTM模型、进行训练和评估。

1.所有文件展示:

1.中文停用词数据(hit_stopwords.txt)来源于:

项目目录预览 - stopwords - GitCode

2.其中data数据集为chinese_text_cnn-master.zip提取出的文件。点击链接进入github,点击Code、Download ZIP即可下载。

2.安装依赖库:

pip install torch # 搭建LSTM模型
pip install gensim # 中文文本词向量转换
pip install numpy # 数据清洗、预处理
pip install pandas

3.数据预处理(data_set.py):

# -*- coding: utf-8 -*-
# @Time : 2023/11/15 10:52
# @Author :Muzi
# @File : data_set.py
# @Software: PyCharm
import pandas as pd
import jieba


# 数据读取
def load_tsv(file_path):
    data = pd.read_csv(file_path, sep='\t')
    data_x = data.iloc[:, -1]
    data_y = data.iloc[:, 1]
    return data_x, data_y

train_x, train_y = load_tsv("./data/train.tsv")
test_x, test_y = load_tsv("./data/test.tsv")
train_x=[list(jieba.cut(x)) for x in train_x]
test_x=[list(jieba.cut(x)) for x in test_x]

with open('./hit_stopwords.txt','r',encoding='UTF8') as f:
    stop_words=[word.strip() for word in f.readlines()]
    print('Successfully')
def drop_stopword(datas):
    for data in datas:
        for word in data:
            if word in stop_words:
                data.remove(word)
    return datas

def save_data(datax,path):
    with open(path, 'w', encoding="UTF8") as f:
        for lines in datax:
            for i, line in enumerate(lines):
                f.write(str(line))
                # 如果不是最后一行,就添加一个逗号
                if i != len(lines) - 1:
                    f.write(',')
            f.write('\n')

if __name__ == '__main':
    train_x=drop_stopword(train_x)
    test_x=drop_stopword(test_x)

    save_data(train_x,'./train.txt')
    save_data(test_x,'./test.txt')
    print('Successfully')

train.txt-去除停用词后的训练集文件:

 

test.txt -去除停用词后的测试集文件:

4. 模型训练以及保存(main.py)

1.LSTM模型搭建:

不同的数据集应该有不同的分类标准,我这里用到的数据模型属于二分类问题

# 定义LSTM模型
class LSTMModel(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(LSTMModel, self).__init__()
        self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)
        self.fc = nn.Linear(hidden_size, output_size)

    def forward(self, x):
        lstm_out, _ = self.lstm(x)
        output = self.fc(lstm_out[:, -1, :])  # 取序列的最后一个输出
        return output

# 定义模型
input_size = word2vec_model.vector_size
hidden_size = 50  # 你可以根据需要调整隐藏层大小
output_size = 2  # 输出的大小,根据你的任务而定

model = LSTMModel(input_size, hidden_size, output_size)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = torch.optim.Adam(model.parameters(), lr=0.0002)

2.main.py代价展示 :

# -*- coding: utf-8 -*-
# @Time : 2023/11/13 20:31
# @Author :Muzi
# @File : mian.py.py
# @Software: PyCharm
import pandas as pd
import torch
from torch import nn
import jieba
from gensim.models import Word2Vec
import numpy as np
from data_set import load_tsv
from torch.utils.data import DataLoader, TensorDataset


# 数据读取
def load_txt(path):
    with open(path,'r',encoding='utf-8') as f:
        data=[[line.strip()] for line in f.readlines()]
        return data

train_x=load_txt('train.txt')
test_x=load_txt('test.txt')
train=train_x+test_x
X_all=[i for x in train for i in x]

_, train_y = load_tsv("./data/train.tsv")
_, test_y = load_tsv("./data/test.tsv")
# 训练Word2Vec模型
word2vec_model = Word2Vec(sentences=X_all, vector_size=100, window=5, min_count=1, workers=4)

# 将文本转换为Word2Vec向量表示
def text_to_vector(text):
    vector = [word2vec_model.wv[word] for word in text if word in word2vec_model.wv]
    return sum(vector) / len(vector) if vector else [0] * word2vec_model.vector_size

X_train_w2v = [[text_to_vector(text)] for line in train_x for text in line]
X_test_w2v = [[text_to_vector(text)] for line in test_x for text in line]

# 将词向量转换为PyTorch张量
X_train_array = np.array(X_train_w2v, dtype=np.float32)
X_train_tensor = torch.Tensor(X_train_array)
X_test_array = np.array(X_test_w2v, dtype=np.float32)
X_test_tensor = torch.Tensor(X_test_array)
#使用DataLoader打包文件
train_dataset = TensorDataset(X_train_tensor, torch.LongTensor(train_y))
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_dataset = TensorDataset(X_test_tensor,torch.LongTensor(test_y))
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=True)
# 定义LSTM模型
class LSTMModel(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(LSTMModel, self).__init__()
        self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)
        self.fc = nn.Linear(hidden_size, output_size)

    def forward(self, x):
        lstm_out, _ = self.lstm(x)
        output = self.fc(lstm_out[:, -1, :])  # 取序列的最后一个输出
        return output

# 定义模型
input_size = word2vec_model.vector_size
hidden_size = 50  # 你可以根据需要调整隐藏层大小
output_size = 2  # 输出的大小,根据你的任务而定

model = LSTMModel(input_size, hidden_size, output_size)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = torch.optim.Adam(model.parameters(), lr=0.0002)

if __name__ == "__main__":
    # 训练模型
    num_epochs = 10
    log_interval = 100  # 每隔100个批次输出一次日志
    loss_min=100
    for epoch in range(num_epochs):
        model.train()
        for batch_idx, (data, target) in enumerate(train_loader):
            outputs = model(data)
            loss = criterion(outputs, target)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            if batch_idx % log_interval == 0:
                print('Epoch [{}/{}], Batch [{}/{}], Loss: {:.4f}'.format(
                    epoch + 1, num_epochs, batch_idx, len(train_loader), loss.item()))
            # 保存最佳模型
            if loss.item()<loss_min:
                loss_min=loss.item()
                torch.save(model, 'model.pth')

    # 模型评估
    with torch.no_grad():
        model.eval()
        correct = 0
        total = 0
        for data, target in test_loader:
            outputs = model(data)
            _, predicted = torch.max(outputs.data, 1)
            total += target.size(0)
            correct += (predicted == target).sum().item()

        accuracy = correct / total
        print('Test Accuracy: {:.2%}'.format(accuracy))

 3.模型保存

 # 保存最佳模型
            if loss.item()<loss_min:
                loss_min=loss.item()
                torch.save(model, 'model.pth')

4.训练结果 

5.LSTM模型测试(test.py) 

# -*- coding: utf-8 -*-
# @Time : 2023/11/15 15:53
# @Author :Muzi
# @File : test.py.py
# @Software: PyCharm
import torch
import jieba
from torch import nn
from gensim.models import Word2Vec
import numpy as np

class LSTMModel(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(LSTMModel, self).__init__()
        self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)
        self.fc = nn.Linear(hidden_size, output_size)

    def forward(self, x):
        lstm_out, _ = self.lstm(x)
        output = self.fc(lstm_out[:, -1, :])  # 取序列的最后一个输出
        return output

# 数据读取
def load_txt(path):
    with open(path,'r',encoding='utf-8') as f:
        data=[[line.strip()] for line in f.readlines()]
        return data

#去停用词
def drop_stopword(datas):
    # 假设你有一个函数用于预处理文本数据
    with open('./hit_stopwords.txt', 'r', encoding='UTF8') as f:
        stop_words = [word.strip() for word in f.readlines()]
    datas=[x for x in datas if x not in stop_words]
    return datas

def preprocess_text(text):
    text=list(jieba.cut(text))
    text=drop_stopword(text)
    return text

# 将文本转换为Word2Vec向量表示
def text_to_vector(text):
    train_x = load_txt('train.txt')
    test_x = load_txt('test.txt')
    train = train_x + test_x
    X_all = [i for x in train for i in x]
    # 训练Word2Vec模型
    word2vec_model = Word2Vec(sentences=X_all, vector_size=100, window=5, min_count=1, workers=4)
    vector = [word2vec_model.wv[word] for word in text if word in word2vec_model.wv]
    return sum(vector) / len(vector) if vector else [0] * word2vec_model.vector_size

if __name__ == '__main__':
    # input_text = "这个车完全就是垃圾,又热又耗油"
    input_text = "这个车我开了好几年,还是不错的"
    label = {1: "正面情绪", 0: "负面情绪"}
    model = torch.load('model.pth')
    # 预处理输入数据
    input_data = preprocess_text(input_text)
    # 确保输入词向量与模型维度和数据类型相同
    input_data=[[text_to_vector(input_data)]]
    input_arry= np.array(input_data, dtype=np.float32)
    input_tensor = torch.Tensor(input_arry)
    # 将输入数据传入模型
    with torch.no_grad():
        output = model(input_tensor)
    predicted_class = label[torch.argmax(output).item()]
    print(f"predicted_text:{input_text}")
    print(f"模型预测的类别: {predicted_class}")

 1.测试结果:

2.测试结果:

6.完整代码展示:

1.data_set.py

import pandas as pd
import jieba

# 数据读取
def load_tsv(file_path):
    data = pd.read_csv(file_path, sep='\t')
    data_x = data.iloc[:, -1]
    data_y = data.iloc[:, 1]
    return data_x, data_y

with open('./hit_stopwords.txt','r',encoding='UTF8') as f:
    stop_words=[word.strip() for word in f.readlines()]
    print('Successfully')
def drop_stopword(datas):
    for data in datas:
        for word in data:
            if word in stop_words:
                data.remove(word)
    return datas

def save_data(datax,path):
    with open(path, 'w', encoding="UTF8") as f:
        for lines in datax:
            for i, line in enumerate(lines):
                f.write(str(line))
                # 如果不是最后一行,就添加一个逗号
                if i != len(lines) - 1:
                    f.write(',')
            f.write('\n')

if __name__ == '__main':
    train_x, train_y = load_tsv("./data/train.tsv")
    test_x, test_y = load_tsv("./data/test.tsv")
    train_x = [list(jieba.cut(x)) for x in train_x]
    test_x = [list(jieba.cut(x)) for x in test_x]
    train_x=drop_stopword(train_x)
    test_x=drop_stopword(test_x)
    save_data(train_x,'./train.txt')
    save_data(test_x,'./test.txt')
    print('Successfully')

2.mian.py

import pandas as pd
import torch
from torch import nn
import jieba
from gensim.models import Word2Vec
import numpy as np
from data_set import load_tsv
from torch.utils.data import DataLoader, TensorDataset


# 数据读取
def load_txt(path):
    with open(path,'r',encoding='utf-8') as f:
        data=[[line.strip()] for line in f.readlines()]
        return data

train_x=load_txt('train.txt')
test_x=load_txt('test.txt')
train=train_x+test_x
X_all=[i for x in train for i in x]

_, train_y = load_tsv("./data/train.tsv")
_, test_y = load_tsv("./data/test.tsv")
# 训练Word2Vec模型
word2vec_model = Word2Vec(sentences=X_all, vector_size=100, window=5, min_count=1, workers=4)

# 将文本转换为Word2Vec向量表示
def text_to_vector(text):
    vector = [word2vec_model.wv[word] for word in text if word in word2vec_model.wv]
    return sum(vector) / len(vector) if vector else [0] * word2vec_model.vector_size

X_train_w2v = [[text_to_vector(text)] for line in train_x for text in line]
X_test_w2v = [[text_to_vector(text)] for line in test_x for text in line]

# 将词向量转换为PyTorch张量
X_train_array = np.array(X_train_w2v, dtype=np.float32)
X_train_tensor = torch.Tensor(X_train_array)
X_test_array = np.array(X_test_w2v, dtype=np.float32)
X_test_tensor = torch.Tensor(X_test_array)
#使用DataLoader打包文件
train_dataset = TensorDataset(X_train_tensor, torch.LongTensor(train_y))
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_dataset = TensorDataset(X_test_tensor,torch.LongTensor(test_y))
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=True)
# 定义LSTM模型
class LSTMModel(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(LSTMModel, self).__init__()
        self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)
        self.fc = nn.Linear(hidden_size, output_size)

    def forward(self, x):
        lstm_out, _ = self.lstm(x)
        output = self.fc(lstm_out[:, -1, :])  # 取序列的最后一个输出
        return output

# 定义模型
input_size = word2vec_model.vector_size
hidden_size = 50  # 你可以根据需要调整隐藏层大小
output_size = 2  # 输出的大小,根据你的任务而定

model = LSTMModel(input_size, hidden_size, output_size)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
optimizer = torch.optim.Adam(model.parameters(), lr=0.0002)

if __name__ == "__main__":
    # 训练模型
    num_epochs = 10
    log_interval = 100  # 每隔100个批次输出一次日志
    loss_min=100
    for epoch in range(num_epochs):
        model.train()
        for batch_idx, (data, target) in enumerate(train_loader):
            outputs = model(data)
            loss = criterion(outputs, target)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            if batch_idx % log_interval == 0:
                print('Epoch [{}/{}], Batch [{}/{}], Loss: {:.4f}'.format(
                    epoch + 1, num_epochs, batch_idx, len(train_loader), loss.item()))
            # 保存最佳模型
            if loss.item()<loss_min:
                loss_min=loss.item()
                torch.save(model, 'model.pth')

    # 模型评估
    with torch.no_grad():
        model.eval()
        correct = 0
        total = 0
        for data, target in test_loader:
            outputs = model(data)
            _, predicted = torch.max(outputs.data, 1)
            total += target.size(0)
            correct += (predicted == target).sum().item()

        accuracy = correct / total
        print('Test Accuracy: {:.2%}'.format(accuracy))

3.test.py 

import torch
import jieba
from torch import nn
from gensim.models import Word2Vec
import numpy as np

class LSTMModel(nn.Module):
    def __init__(self, input_size, hidden_size, output_size):
        super(LSTMModel, self).__init__()
        self.lstm = nn.LSTM(input_size, hidden_size, batch_first=True)
        self.fc = nn.Linear(hidden_size, output_size)

    def forward(self, x):
        lstm_out, _ = self.lstm(x)
        output = self.fc(lstm_out[:, -1, :])  # 取序列的最后一个输出
        return output

# 数据读取
def load_txt(path):
    with open(path,'r',encoding='utf-8') as f:
        data=[[line.strip()] for line in f.readlines()]
        return data

#去停用词
def drop_stopword(datas):
    # 假设你有一个函数用于预处理文本数据
    with open('./hit_stopwords.txt', 'r', encoding='UTF8') as f:
        stop_words = [word.strip() for word in f.readlines()]
    datas=[x for x in datas if x not in stop_words]
    return datas

def preprocess_text(text):
    text=list(jieba.cut(text))
    text=drop_stopword(text)
    return text

# 将文本转换为Word2Vec向量表示
def text_to_vector(text):
    train_x = load_txt('train.txt')
    test_x = load_txt('test.txt')
    train = train_x + test_x
    X_all = [i for x in train for i in x]
    # 训练Word2Vec模型
    word2vec_model = Word2Vec(sentences=X_all, vector_size=100, window=5, min_count=1, workers=4)
    vector = [word2vec_model.wv[word] for word in text if word in word2vec_model.wv]
    return sum(vector) / len(vector) if vector else [0] * word2vec_model.vector_size

if __name__ == '__main__':
    input_text = "这个车完全就是垃圾,又热又耗油"
    # input_text = "这个车我开了好几年,还是不错的"
    label = {1: "正面情绪", 0: "负面情绪"}
    model = torch.load('model.pth')
    # 预处理输入数据
    input_data = preprocess_text(input_text)
    # 确保输入词向量与模型维度和数据类型相同
    input_data=[[text_to_vector(input_data)]]
    input_arry= np.array(input_data, dtype=np.float32)
    input_tensor = torch.Tensor(input_arry)
    # 将输入数据传入模型
    with torch.no_grad():
        output = model(input_tensor)
    # 这里只一个简单的示例
    predicted_class = label[torch.argmax(output).item()]
    print(f"predicted_text:{input_text}")
    print(f"模型预测的类别: {predicted_class}")

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/149978.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

聊聊模糊测试,以及几种模糊测试工具的介绍!

以下为作者观点&#xff1a; 在当今的数字环境中&#xff0c;漏洞成为攻击者利用系统漏洞的通道&#xff0c;对网络安全构成重大威胁。这些漏洞可能存在于硬件、软件、协议实施或系统安全策略中&#xff0c;允许未经授权的访问并破坏系统的完整性。 根据 "常见漏洞与暴露…

在Linux中nacos集群模式部署

一、安装 配置nacos 在Linux中建立一个nacos文件夹 mkdir nacos 把下载的压缩包拉入刚才创建好的nacos文件中 解压 tar -zxvf nacos-server-1.4.1\.tar.gz 修改配置文件 进入nacos文件中的conf文件的cluster.conf.example 修改cluster.conf.example文件 vim cluster.conf.exa…

Django(六、模板层)

文章目录 模板传值模板语法传值特性 模板语法之过滤器常用的过滤器模板层之标签模板中的标签的格式为标签之if判断 标签之for循环模板的继承与导入模板导入导入格式 模板传值 """ 模板层三种语法 {{}}:主要与数据值相关 {%%}:主要与逻辑相关 {##}&#xff1a;模…

【开源】基于Vue和SpringBoot的快乐贩卖馆管理系统

项目编号&#xff1a; S 064 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S064&#xff0c;文末获取源码。} 项目编号&#xff1a;S064&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 搞笑视频模块2.3 视…

Linux常用的磁盘使用情况命令汇总

1、查看分区使用百分比 df -h 2、查看指定目录磁盘使用情况 du -hac --max-depth1 /opt 参数&#xff1a;-a 查看所有文件&#xff0c;-c 汇总统计&#xff0c;max-depth1 查看深度为1&#xff0c;2级目录不再统计。 3、常用统计命令汇总

一键帮您解决win11最新版画图工具难用问题!

&#x1f984;个人主页:修修修也 ⚙️操作环境:Windows 11 正文 自从win11更新后,新版的画图工具变得非常难用,如: 使用橡皮擦后露出背版马赛克 框住某部分拖动移动时背景露出马赛克剪贴板上图片信息无法直接插入到画图板 目前没有一个好一些的能够在软件内部解决这些问题的方…

参考意义大。4+巨噬细胞相关生信思路,简单易复现。

今天给同学们分享一篇生信文章“Angiogenesis regulators S100A4, SPARC and SPP1 correlate with macrophage infiltration and are prognostic biomarkers in colon and rectal cancers”&#xff0c;这篇文章发表在Front Oncol期刊上&#xff0c;影响因子为4.7。 结果解读&a…

软件测试个人求职简历该怎么写,模板在这里

1、个人资料 姓 名&#xff1a;xxx 性 别&#xff1a;x 手机号码&#xff1a;138888888xx 邮 箱&#xff1a; xxx 学 历&#xff1a;本科 专 业&#xff1a;电子商务 英 语&#xff1a;四级 当前工作&#xff1a;测试工程师 从业时间&#xff1a;4年 期望薪资&#xff1a;…

HDFS入门--学习笔记

1&#xff0c;大数据介绍 定义 数据指的是&#xff1a;一种可以被鉴别的、对客观事件进行记录的符号&#xff0c;除了可以是最简单的 数字外&#xff0c;也可以是各类符号、文字、图像、声音等。 通俗地说&#xff0c;数据就是对人类的行为及发生事件的一种记录。 存在的价值…

使用群晖虚拟机快速搭建黑群晖并在公网移动端环境下使用软件

文章目录 前言本教程解决的问题是&#xff1a;按照本教程方法操作后&#xff0c;达到的效果是前排提醒&#xff1a; 1. 搭建群晖虚拟机1.1 下载黑群晖文件vmvare虚拟机安装包1.2 安装VMware虚拟机&#xff1a;1.3 解压黑群晖虚拟机文件1.4 虚拟机初始化1.5 没有搜索到黑群晖的解…

Mysql中的索引与事务和B树的知识补充

索引与事务和B树的知识补充 一.索引1.概念2.作用3.使用场景4.使用 二.事务1.为什么使用事务2.事务的概念3.使用3.1脏读问题3.2不可重复读3.3 幻读问题3.4解决3.5 使用代码 三.B树的知识补充1.B树2.B树 一.索引 1.概念 索引是一种特殊的文件&#xff0c;包含着对数据表里所有记…

QGIS之二十栅格数据定义投影

效果 步骤 1、准备数据 2、定义投影 Qgis工具箱中搜索“投影” 指定投影坐标系&#xff0c;例如EPSG&#xff1a;4549 运行 3、结果 查看属性

【Qt-23】基于QCharts绘制曲线图

一、QChart简介 QChart是Qt中专门用于绘制图表的模块&#xff0c;支持折线图、柱状图、饼图等常见类型。其主要组成部分有&#xff1a; QChart&#xff1a;整个图表的容器&#xff0c;管理图表中的所有数据和图形属性QChartView&#xff1a;继承自QGraphicsView&#xff0c;用于…

day2324_jdbc

今日内容 零、 复习昨日 一、作业 二、SQL注入 三、PreparedStatement 四、事务 五、DBUtil 零、 复习昨日 一、引言 1.1 如何操作数据库 使用客户端工具访问数据库&#xff0c;需要手工建立连接&#xff0c;输入用户名和密码登录&#xff0c;编写 SQL 语句&#xff0c;点击执行…

基于MS16F3211芯片的触摸控制灯的状态变化和亮度控制(11.15)

1.任务所需实现基本功能 关机状态时白灯亮蓝灯灭&#xff0c;此时长按按键无反应&#xff0c;白灯亮度降低的状态&#xff0c;蓝灯保持灭的状态。点按按键一次&#xff0c;白灯熄灭&#xff0c;蓝灯亮此时W引脚控制的灯亮。继续点按按键。蓝灯亮&#xff0c;此时W引脚控制的灯…

9.3 【MySQL】系统表空间

了解完了独立表空间的基本结构&#xff0c;系统表空间的结构也就好理解多了&#xff0c;系统表空间的结构和独立表空间基本类似&#xff0c;只不过由于整个MySQL进程只有一个系统表空间&#xff0c;在系统表空间中会额外记录一些有关整个系统信息的页面&#xff0c;所以会比独立…

python之 flask 框架(2)项目拆分的 执行逻辑

项目的结构图 app.py # 导入__init__.py 比较特殊 from APP import create_appapp create_app() if __name__ __main__:app.run(debugTrue)init.py # __inti__.py # 初始化文件&#xff0c;创建Flask应用 from flask import Flask from .views import bluedef create_ap…

多媒体播放器Infuse mac中文版软件特点

Infuse mac是一款多媒体播放器应用&#xff0c;它支持播放多种格式的视频文件、音频文件和图片文件&#xff0c;并且可以通过AIrPlay将媒体内容投放到其他设备上。Infuse还支持在线视频流媒体播放和本地网络共享&#xff0c;用户可以通过它来访问家庭网络上的媒体文件。 Infuse…

【银行测试】支付功能、支付平台、支持渠道如何测试?

有朋友提问&#xff1a;作为一个支付平台&#xff0c;接入了快钱、易宝或直连银行等多家的渠道&#xff0c;内在的产品流程是自己的。业内有什么比较好的测试办法&#xff0c;来测试各渠道及其支持的银行通道呢&#xff1f; 作为产品&#xff0c;我自己办了十几张银行卡方便测…

Python数据容器(字典)

字典 1.字典的定义2.字典数据的获取3.字典的嵌套4.嵌套字典的内容获取5.字典的常用操作6.常用操作总结7.遍历字典8.练习 1.字典的定义 同样使用{}&#xff0c;不过存储的元素是一个一个的&#xff1a;键值对&#xff0c;语法如下 # 定义字典字面量 {key:value,key:value,...,…