【算法】最短路径——迪杰斯特拉 (Dijkstra) 算法

目录

  • 1.概述
  • 2.代码实现
    • 2.1.节点类
    • 2.2.邻接矩阵存储图
    • 2.3.邻接表存储图
    • 2.4.测试
  • 3.扩展
    • 3.1.只计算一对顶点之间的最短路径
    • 3.2.获取起点到其它节点具体经过的节点
  • 4.应用

本文参考:
LABULADONG 的算法网站

1.概述

(1)在图论中,最短路径是指在加权图中两个顶点之间长度最短的路径,这个路径的长度是每条边的权重之和。在现实生活中,可以将图中的顶点表示为地点,将边表示为这些地点之间的道路或交通线路,把每条边的权重定义为行程时间、行驶距离、经济成本、能源消耗等相应的度量单位。在这种情况下,最短路径问题就是为了找到从一个地点到另一个地点的最快、最短、最便宜、最节能的路径。最短路径问题在计算机科学和运筹学方面非常重要,它可以解决很多现实问题,如网页排名算法、路由算法、航班调度、电信网络建设等。Dijkstra 算法是解决最短路径问题的经典算法之一。

(2)迪杰斯特拉算法 (Dijkstra) 是由荷兰计算机科学家狄克斯特拉于1959年提出的,因此又叫狄克斯特拉算法。是从一个顶点到其余各顶点的最短路径算法,解决的是有权图中最短路径问题。迪杰斯特拉算法主要特点是从起始点开始,采用贪心算法的策略,每次遍历到始点距离最近且未访问过的顶点的邻接节点,直到扩展到终点为止。

(3)实现 Dijkstra 算法的一种基本思路如下:

  • 维护一个待确定最短路径的节点的集合,初始时只有起点。之后,每次从这个集合中取出一个节点,更新它所有邻居的距离,将它们加入这个集合中。具体实现中,使用一个优先队列来存储待访问的节点,并按照最短距离从小到大的顺序进行访问。
  • 在代码中,使用一个数组 dist 来记录起点到每个节点的最短距离,同时使用一个自定义的 Node 类来表示所有待访问的节点,并存储其与起点的距离。算法主体部分由一个 while 循环实现。每次取出队列中距离最小的节点,并遍历其所有邻居,更新起点到每个邻居的距离,然后将未确定最短路径的点加入队列中。

常数较小的情况下,Dijkstra 算法的时间复杂度为 O(ElogV),其中 E 为边数,V 为顶点数。

2.代码实现

2.1.节点类

class Node {
    //图中当前节点的 id
    int id;
    //从 start 节点到当前节点的距离
    int distFromStart;

    public Node(int id, int distFromStart) {
        this.id = id;
        this.distFromStart = distFromStart;
    }
}

2.2.邻接矩阵存储图

class Solution {
    /*
		start: 起点
		graph: 用于表示图的邻接矩阵
		返回值: 起点到图中每一个点的最短距离
	*/
    public int[] dijkstra(int start, int[][] graph) {
        // dist[i] 表示起点 start 到节点 i 的最短路径长度
        int[] dist = new int[graph.length];
        // dist[i] = Integer.MAX_VALUE 表示起点到节点 i 之间不可达
        Arrays.fill(dist, Integer.MAX_VALUE);
        //起点与自己之间的最短路径长度为 0
        dist[start] = 0;
        //自定义优先级队列规则,distFromStart 值较小的节点排在队首
        Queue<Node> queue = new PriorityQueue<>(Comparator.comparingInt(a -> a.distFromStart));
        queue.offer(new Node(start, 0));
        while (!queue.isEmpty()) {
            //取出队首元素
            Node node = queue.poll();
            int id = node.id;
            int curDistFromStart = node.distFromStart;
            if (curDistFromStart > dist[id]) {
                continue;
            }
            //将与当前节点相邻的所有节点存入队列
            for (int i = 0; i < graph[id].length; i++) {
                if (graph[id][i] != Integer.MAX_VALUE) {
                    int distToNextNode = dist[id] + graph[id][i];
                    // 更新 dist
                    if (dist[i] > distToNextNode) {
                        dist[i] = distToNextNode;
                        queue.offer(new Node(i, distToNextNode));
                    }
                }
            }
        }
        return dist;
    }
}

2.3.邻接表存储图

class Solution {
    /*
		start: 起点
		graph: 用于表示图的邻接表
		返回值: 起点到图中每一个点的最短距离
	*/
    public int[] dijkstra(int start, List<int[]>[] graph) {
        // dist[i] 表示起点 start 到节点 i 的最短路径长度
        int[] dist = new int[graph.length];
        // dist[i] = Integer.MAX_VALUE 表示起点到节点 i 之间不可达
        Arrays.fill(dist, Integer.MAX_VALUE);
        //起点与自己之间的最短路径长度为 0
        dist[start] = 0;
        //自定义优先级队列规则,distFromStart 值较小的节点排在队首
        Queue<Node> queue = new PriorityQueue<>(Comparator.comparingInt(a -> a.distFromStart));
        queue.offer(new Node(start, 0));
        while (!queue.isEmpty()) {
            //取出队首元素
            Node node = queue.poll();
            int id = node.id;
            int curDistFromStart = node.distFromStart;
            if (curDistFromStart > dist[id]) {
                continue;
            }
            //将与当前节点相邻的所有节点存入队列
            for (int[] neighbor : graph[id]) {
                int nextNodeID = neighbor[0];
                int distToNextNode = dist[id] + neighbor[1];
                //更新 dist
                if (dist[nextNodeID] > distToNextNode) {
                    dist[nextNodeID] = distToNextNode;
                    queue.offer(new Node(nextNodeID, distToNextNode));
                }
            }
        }
        return dist;
    }
}

2.4.测试

(1)本测试中的加权无向图如下所示,并且设置起点为 0。

在这里插入图片描述

(2)邻接矩阵的测试代码如下:

class Test {
	public static void main(String[] args) {
        //图的顶点数
        int n = 7;
        int[][] graph = new int[n][n];
        //初始化邻接矩阵,初始化为 Integer.MAX_VALUE 表示不可达
        for (int i = 0; i < n; i++) {
            Arrays.fill(graph[i], Integer.MAX_VALUE);
        }
        //添加图的边
        graph[0][1] = 9;
        graph[0][5] = 1;
        graph[1][0] = 9;
        graph[1][2] = 4;
        graph[1][6] = 3;
        graph[2][1] = 4;
        graph[2][3] = 2;
        graph[3][2] = 2;
        graph[3][4] = 6;
        graph[3][6] = 5;
        graph[4][3] = 6;
        graph[4][5] = 8;
        graph[4][6] = 7;
        graph[5][0] = 1;
        graph[5][4] = 8;
        graph[6][1] = 3;
        graph[6][3] = 5;
        graph[6][4] = 7;

        Solution solution = new Solution();
        int start = 0;
        int[] distances = solution.dijkstra(start, graph);
        System.out.println(Arrays.toString(distances));
    }
}

输出结果如下:

[0, 9, 13, 15, 9, 1, 12]

(3)邻接表的测试代码如下:

class Test {
	public static void main(String[] args) {
        //图的顶点数
        int n = 7; 
        List<int[]>[] graph = new ArrayList[n];
        //初始化邻接表
        for (int i = 0; i < n; i++) {
            graph[i] = new ArrayList<>();
        }
        //添加图的边
        graph[0].add(new int[]{1, 9});
        graph[0].add(new int[]{5, 1});
        graph[1].add(new int[]{0, 9});
        graph[1].add(new int[]{2, 4});
        graph[1].add(new int[]{6, 3});
        graph[2].add(new int[]{1, 4});
        graph[2].add(new int[]{3, 2});
        graph[3].add(new int[]{2, 2});
        graph[3].add(new int[]{4, 6});
        graph[3].add(new int[]{6, 5});
        graph[4].add(new int[]{3, 6});
        graph[4].add(new int[]{5, 8});
        graph[4].add(new int[]{6, 7});
        graph[5].add(new int[]{0, 1});
        graph[5].add(new int[]{4, 8});
        graph[6].add(new int[]{1, 3});
        graph[6].add(new int[]{3, 5});
        graph[6].add(new int[]{4, 7});

        Solution solution = new Solution();
        int start = 0;
        int[] distances = solution.dijkstra(start, graph);
        System.out.println(Arrays.toString(distances));
    }
}

输出结果如下:

[0, 9, 13, 15, 9, 1, 12]

3.扩展

3.1.只计算一对顶点之间的最短路径

如果现在只需计算起点 start 到终点 end 的最短路径,那么只需要简单修改上述代码即可,以用邻接表存储图的代码为例:

class Solution {
	/*
		start: 起点
		graph: 用于表示图的邻接矩阵
		返回值: 起点 start 到终点 end 的最短路径
	*/
    public int dijkstra(int start, int end, int[][] graph) {
    
        //...
        
        while (!queue.isEmpty()) {
            //取出队首元素
            Node node = queue.poll();
            int id = node.id;
            int curDistFromStart = node.distFromStart;

            //添加如下代码:如果遍历到 end,直接返回 curDistFromStart 即可
            if (id == end) {
                return curDistFromStart;
            }

            if (curDistFromStart > dist[id]) {
                continue;
            }
            
            //... 
        }
        //如果运行到这里,说明 start 到 end 之间不可达
        return Integer.MAX_VALUE;
    }
}

3.2.获取起点到其它节点具体经过的节点

(1)如果需要找到起点到其余节点的最短路径中依次经过的节点,可以在 Dijkstra 算法中添加一个 prev 数组或 map,记录节点i的前一个访问过的节点 j。在更新 dist[i] 的同时,同时更新 prev[i] = j。最后,通过回溯 prev 数组,可以从目标节点往回遍历,找到最短路径上的所有节点。具体来说,可以按以下步骤实现:

  • 初始化 prev 数组,将所有节点的前继节点都设置为起点。
  • 在更新 dist[i] 的同时,同时更新 prev[i] = j。
  • 当所有节点都处理完毕后,就可以从目标节点往回遍历 prev 数组,找到最短路径上的所有节点。

(2)以用邻接表存储图的代码为例,具体代码如下所示:

class Solution {
	/*
		start: 起点
		graph: 用于表示图的邻接表
		返回值: 起点到图中每一个点的最短距离依次所经过的节点
	*/
    public List<List<Integer>> findShortestPaths(int start, List<int[]>[] graph) {
        int n = graph.length;
        int[] dist = new int[n];
        Arrays.fill(dist, Integer.MAX_VALUE);
        dist[start] = 0;
        int[] prev = new int[n];
        Arrays.fill(prev, start);
        Queue<Node> queue = new PriorityQueue<>(Comparator.comparingInt(a -> a.distFromStart));
        queue.offer(new Node(start, 0));
        while (!queue.isEmpty()) {
            Node node = queue.poll();
            int id = node.id;
            int curDistFromStart = node.distFromStart;
            if (curDistFromStart > dist[id]) {
                continue;
            }
            for (int[] neighbor : graph[id]) {
                int nextNodeID = neighbor[0];
                int distToNextNode = dist[id] + neighbor[1];
                if (dist[nextNodeID] > distToNextNode) {
                    //在更新 dist[nextNodeID] 时,同时更新 prev[nextNodeID]
                    dist[nextNodeID] = distToNextNode;
                    prev[nextNodeID] = id;
                    queue.offer(new Node(nextNodeID, distToNextNode));
                }
            }
        }

        //通过 prev 数组回溯路径
        List<List<Integer>> paths = new ArrayList<>();
        for (int i = 0; i < n; i++) {
            List<Integer> path = new ArrayList<>();
            int curNode = i;
            while (curNode != start) {
                path.add(curNode);
                curNode = prev[curNode];
            }
            path.add(start);
            Collections.reverse(path);
            paths.add(path);
        }
        return paths;
    }
}

(3)测试代码如下:

class Solution {
	public static void main(String[] args) {
        //图的顶点数
        int n = 7;
        List<int[]>[] graph = new ArrayList[n];
        //初始化邻接表
        for (int i = 0; i < n; i++) {
            graph[i] = new ArrayList<>();
        }
        //添加图的边
        graph[0].add(new int[]{1, 9});
        graph[0].add(new int[]{5, 1});
        graph[1].add(new int[]{0, 9});
        graph[1].add(new int[]{2, 4});
        graph[1].add(new int[]{6, 3});
        graph[2].add(new int[]{1, 4});
        graph[2].add(new int[]{3, 2});
        graph[3].add(new int[]{2, 2});
        graph[3].add(new int[]{4, 6});
        graph[3].add(new int[]{6, 5});
        graph[4].add(new int[]{3, 6});
        graph[4].add(new int[]{5, 8});
        graph[4].add(new int[]{6, 7});
        graph[5].add(new int[]{0, 1});
        graph[5].add(new int[]{4, 8});
        graph[6].add(new int[]{1, 3});
        graph[6].add(new int[]{3, 5});
        graph[6].add(new int[]{4, 7});

        Solution solution = new Solution();
        int start = 4;
        List<List<Integer>> paths = solution.findShortestPaths(start, graph);
        for (int i = 0; i < n; i++) {
            System.out.println("从节点 " + start + " 到节点 " + i +
                    " 的最短距离经过的节点依次为: " + paths.get(i));
        }
    }
}

输出结果如下:

从节点 4 到节点 0 的最短距离经过的节点依次为: [4, 5, 0]
从节点 4 到节点 1 的最短距离经过的节点依次为: [4, 6, 1]
从节点 4 到节点 2 的最短距离经过的节点依次为: [4, 3, 2]
从节点 4 到节点 3 的最短距离经过的节点依次为: [4, 3]
从节点 4 到节点 4 的最短距离经过的节点依次为: [4]
从节点 4 到节点 5 的最短距离经过的节点依次为: [4, 5]
从节点 4 到节点 6 的最短距离经过的节点依次为: [4, 6]

4.应用

(1)Dijkstra算法是一种用于解决单源最短路径问题的算法。它可以帮助找到从一个源节点到图中所有其他节点的最短路径。这个算法广泛应用于许多领域,包括以下几个方面:

  • 网络路由:Dijkstra 算法在网络路由中被广泛使用,用于计算最短路径来传输数据包。
  • 交通规划:Dijkstra 算法可以用于交通网络中的最短路径规划,例如在城市道路网络中找到最短驾驶路线。
  • 电信网络:Dijkstra 算法可以用于计算通信网络中的最短路径,例如电话网络或互联网中的数据包传输。
  • 地理信息系统 (GIS):Dijkstra 算法可以用于计算地理信息系统中的最短路径,例如导航系统中找到最佳行驶路径。
  • 运输和物流:Dijkstra 算法可以用于解决运输和物流问题,例如货物配送中最优路径的规划。

(2)大家可以去 LeetCode 上找相关的 Dijkstra 算法的题目来练习,或者也可以直接查看 LeetCode算法刷题目录 (Java) 这篇文章中的最短路径章节。如果大家发现文章中的错误之处,可在评论区中指出。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/148543.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

个人微信机器人接口

请求URL&#xff1a; http://域名地址/modifyGroupName 请求方式&#xff1a; POST 请求头Headers&#xff1a; Content-Type&#xff1a;application/jsonAuthorization&#xff1a;login接口返回 参数&#xff1a; 参数名必选类型说明wId是String登录实例标识chatRoom…

unity UGUI无限循环滚动居中

最近在做一个ui循环滚动的功能&#xff0c;网上找了半天脚本感觉都和我实际需求不太符合&#xff0c;自己花费一些时间完成了这个功能记录一下。下面开始正题 &#xff0c;我是采用unity自带组件Scroll View来完成&#xff0c;首先设置Scroll View如下图 面板层级结构如下 然…

java springBoot实现RabbitMq消息队列 生产者,消费者

1.RabbitMq的数据源配置文件 # 数据源配置 spring:rabbitmq:host: 127.0.0.1port: 5672username: rootpassword: root#消息发送和接收确认publisher-confirms: truepublisher-returns: truelistener:direct:acknowledge-mode: manualsimple:acknowledge-mode: manualretry:ena…

mysql---主从复制和读写分离

主从复制 主从复制&#xff0c;修改&#xff0c;表里的数据&#xff1a;主mysql上的数据&#xff0c;新增都会同步到从mysql上面试题&#xff1a;mysql的主从复制的模式&#xff1a; 1、异步复制&#xff1a;mysql的默认复制就是异步复制。只要执行完之后&#xff0c;客户端提…

自动化测试Mock神器:轻松模拟HTTP请求..

一、背景 在日常测试过程中或者研发开发过程中&#xff0c;目前接口暂时没有开发完成&#xff0c;测试人员又要提前介入接口测试中&#xff0c;测试人员不仅仅只是简单的编写测试用例&#xff0c;也可以通过一些mock的方法进行来提前根据接口测试的情况进行模拟返回接口的信息…

软件测试/测试开发丨接口自动化测试学习笔记,加密与解密

点此获取更多相关资料 本文为霍格沃兹测试开发学社学员学习笔记分享 原文链接&#xff1a;https://ceshiren.com/t/topic/28019 一、原理 在得到响应后对响应做解密处理&#xff1a; 如果知道使用的是哪个通用加密算法的话&#xff0c;可以自行解决。如果不了解对应的加密算法…

终于有人把VMware虚拟机三种网络模式讲清楚了!

前段时间VMware更新了&#xff0c;你用上最新版了吗&#xff1f; 有几个网工在操作中遇到过各种各样的问题。 比如说由于公司服务器重启导致出现下面的问题&#xff1a;在Xshell里连接虚拟机映射时连接失败&#xff1b;能够连接上虚拟机的映射地址&#xff0c;但git pull时报…

企业常用的几种FTP传输加速方式,最后一种百倍提速

在数字化时代&#xff0c;FTP传输协议仍然是企业之间进行文件传输的重要方式之一。但是&#xff0c;传统的FTP传输速度较慢&#xff0c;对于大文件和海量数据的传输更是显得力不从心。为了提高FTP传输速度&#xff0c;企业们通常会采取一些加速方式。本文将介绍几种企业常用的F…

考研分享第3期 | 211本378分上岸大连理工电子信息经验贴

考研分享第3期 | 211本378分上岸大连理工电子信息经验贴 一、个人信息 姓名&#xff1a;Ming 本科院校&#xff1a;某211学校电子信息工程学院 电子科学与技术专业 上岸院校&#xff1a;大连理工大学 电子信息与电气工程学部 电子信息&#xff08;0854&#xff09; 择校意…

CSGO游戏搬砖项目需要掌握哪些基础知识?

CSGO搬砖之90%饰品商人都不知道的玄学皮肤盘点 CSGO游戏搬砖主要就是倒卖装备&#xff0c;那具体是哪些装备&#xff0c;以及怎么去区分皮肤类型&#xff0c;今天童话就给大家介绍一下。 CSGO游戏搬砖虽然不要求会玩游戏&#xff0c;但是我们作为一个商人&#xff0c;要知道我…

JAVA基础9:Debug

1.Debug概述 Debug:是供程序员使用的程序调试工具&#xff0c;它可以用于查看程序的执行流程&#xff0c;也可以用于追踪程序执行过程来调试程序。 2.Debug操作流程 Debug调试&#xff0c;又被称为断点调试&#xff0c;断点其实是一个标记&#xff0c;告诉我们从哪里开始查看…

MyBatis配置与映射文件深度解析

文章目录 MyBatis配置文件解析配置文件的组成部分配置数据源和数据库连接信息MyBatis的属性和类型别名 MyBatis映射文件详解映射文件的作用编写简单的映射文件resultMap和resultType的区别 结语 &#x1f388;个人主页&#xff1a;程序员 小侯 &#x1f390;CSDN新晋作者 &…

Postman如何发送Https请求

Postman如果想要发送Https请求&#xff0c;需要从设置中将SSL安全认证禁用

LoadRunner脚本编写之三(事务函数)

关于脚本的这块&#xff0c;前两篇都在讲C语言&#xff0c;其实&#xff0c;要整理点实用的东西挺难&#xff0c;在应用中多对录制的脚本分析&#xff0c;但对于新手学脚本确实无从下手。 先贴一个脚本&#xff1a; 完整代码&#xff1a; 重点代码部分&#xff1a; Action(…

数据中心:精密空调监控,这招太高效了!

在当今日益复杂的工业环境中&#xff0c;精密空调系统的监控和管理变得至关重要。随着科技的迅猛发展&#xff0c;各行各业对温度、湿度和空气质量等参数的高度控制需求不断增加。 精密空调监控系统通过实时数据采集、分析和反馈&#xff0c;为企业提供了可靠的手段来确保生产环…

一步路难倒英雄汉?app自动化测试,怎么从零搭建appium!

不少软件测试想进阶到自动化测试&#xff0c;没有前人知道&#xff0c;只能像个无头的苍蝇&#xff0c;到处乱转&#xff0c;根本不知道从何处下手 特别是自学路上碰到需要安装什么程序、工具的时候&#xff0c;一个报错就需要在百度上查个半天&#xff0c;这么浪费时间的事情…

入站一个月涨粉80万!B站竖屏UP主如何突出重围?

B站仍然秉持着“内容为王”的社区氛围&#xff0c;这也是众多UP主们一同坚持的事。不管是今年宣布的Story Mode竖屏模式开放还是14周年庆上B站董事长兼CEO陈睿宣布作品播放量改播放分钟数等等改动来看&#xff0c;都能感受到B站在向更多优质创作者招手&#xff0c;并维护着优质…

MySQL--视图、存储过程、触发器

1、视图 1、定义&#xff1a; 所谓的视图是一种虚拟存在的表&#xff0c;视图中的数据并不在数据库中实际存在&#xff0c;就是视图只保存了查询的SQL逻辑&#xff0c;不保存查询的结果&#xff0c;所以在创建视图的时候&#xff0c;主要的工作就是落在创建这条SQL查询语句的时…

web 渗透 信息搜集

一 收集域名信息 1.whois查询 whois&#xff08;读作“Who is”&#xff0c;非缩写&#xff09;&#xff0c;标准的互联网协议&#xff0c…

Vue 模板语法 v-bind

红色框里面的都是vue的模板。有了模板就得有模板的特殊语法。上面只是简单的双括号加上表达式&#xff0c;这种叫做插值语法&#xff0c;除了这种语法还有其他语法吗&#xff1f; 插值语法实现的功能很单一&#xff0c;就是将指定的值放到指定的位置。还有一种叫做指令语法&am…