【【OpenCV实现图像:用OpenCV进行模板匹配】

文章目录

    • 概要
    • 整体架构流程
    • 图像灰度化
    • 结论

概要

模板匹配是一种在图像处理领域广泛应用的技术,旨在寻找目标模板在源图像中的位置。该算法的核心思想是通过比较模板与源图像的局部区域,逐像素滑动,创建一个相似度图,反映了模板与源图像各位置的相似程度。
使用OpenCV库实现模板匹配,该过程类似于在卷积神经网络中使用卷积核的方式。

模板匹配的基本原理:
模板匹配的基本原理是在源图像上通过逐像素滑动的方式,将模板与源图像的每个部分进行比较。这相当于在图像上进行卷积操作,其中每个像素值表示了模板与源图像相应区域的相似性。这个过程生成了一个相似度图,通过分析该图,可以识别出峰值,这些峰值对应于源图像中与模板相匹配的位置。

OpenCV中的模板匹配实现:
在OpenCV中,模板匹配通过cv2.matchTemplate()函数实现。该函数采用源图像和模板图像作为输入,返回一个相似度图。通过分析相似度图,可以使用cv2.minMaxLoc()函数找到最大匹配值的位置,从而确定模板在源图像中的位置。

相似性度量的选择:
模板匹配的实现可能基于不同的相似性度量方法,例如平方差匹配、相关性匹配或归一化互相关匹配。选择适当的相似性度量方法取决于具体的应用场景和需求。

整体架构流程

首先导入原图像并且显示出来:

# Import libraries
import numpy as np
import matplotlib.pyplot as plt
from skimage.io import imread, imshow
from skimage.color import rgb2gray
from skimage.feature import match_template
from skimage.feature import peak_local_max

# Load the original image
original_image = imread('121.jpg')

# Show the original image with a smaller window
plt.figure(figsize=(10, 10))
plt.imshow(original_image)
plt.title('Original Image', fontsize=16, weight='bold')
plt.axis('off')
plt.show()

在这里插入图片描述

图像灰度化

虽然模板匹配适用于彩色图像,但让我们简化并将图像转换为灰度图来减少计算量。
这个可以调节窗口大小:
改(5,5)即可

plt.figure(figsize=(5,5))
# Import libraries
import numpy as np
import matplotlib.pyplot as plt
from skimage.io import imread, imshow
from skimage.color import rgb2gray
from skimage.feature import match_template
from skimage.feature import peak_local_max

# Load the original image
original_image = imread('121.jpg')

# Convert the image to grayscale
gray_image = rgb2gray(original_image[:,:,:3])
plt.figure(figsize=(5,5))
plt.imshow(gray_image, cmap='gray')
plt.title('Grayscale Image', fontsize=20, weight='bold')
plt.axis('off')
plt.show()

在这里插入图片描述
加载模板
现在,让我们从灰度图中截取一个心动的表情作为我们的目标模板,代码如下

# Import libraries
import numpy as np
import matplotlib.pyplot as plt
from skimage.io import imread, imshow
from skimage.color import rgb2gray
from skimage.feature import match_template
from skimage.feature import peak_local_max

# Load the original image
original_image = imread('121.jpg')

# Convert the image to grayscale
gray_image = rgb2gray(original_image[:,:,:3])
plt.figure(figsize=(10,10))
plt.imshow(gray_image, cmap='gray')
plt.title('Grayscale Image', fontsize=20, weight='bold')
plt.axis('off')
plt.show()
template = gray_image[:80, -80:]
plt.figure(figsize=(5,5))
plt.imshow(template, cmap='gray')
plt.title('Template Image', fontsize=20, weight='bold')
plt.axis('off')
plt.show();
print("Original image shape:", original_image.shape)
print("Gray image shape:", gray_image.shape)
print("Template shape:", template.shape)

取表情包的代码:template = gray_image[:80, -80:]
是指一个区域,这是最右上角的表情

在这里插入图片描述
这个是最左下角,可以自行适当调整。

template = gray_image[-80:, :80]

在这里插入图片描述

模板匹配

通过使用 skimage库中的match_template函数 , 我们可以得到衡量模板图和原图的相似度的热力图,如下:

result = match_template(gray_image, template)
plt.figure(figsize=(10,10))
imshow(result, cmap='viridis')
plt.show();

在这里插入图片描述
全部代码:

# Import libraries
import numpy as np
import matplotlib.pyplot as plt
from skimage.io import imread, imshow
from skimage.color import rgb2gray
from skimage.feature import match_template
from skimage.feature import peak_local_max

# Load the original image
original_image = imread('121.jpg')

# Convert the image to grayscale
gray_image = rgb2gray(original_image[:,:,:3])
plt.figure(figsize=(10,10))
plt.imshow(gray_image, cmap='gray')
plt.title('Grayscale Image', fontsize=20, weight='bold')
plt.axis('off')
plt.show()

# Define the template
template = gray_image[:80, -80:]

# Show the template
plt.figure(figsize=(5,5))
plt.imshow(template, cmap='gray')
plt.title('Template Image', fontsize=20, weight='bold')
plt.axis('off')
plt.show()

# Perform template matching
result = match_template(gray_image, template)

# Display the result
plt.figure(figsize=(10,10))
imshow(result, cmap='viridis')
plt.show()

# Find the location of the template
x, y = np.unravel_index(np.argmax(result), result.shape)

# Display the original image with the rectangle around the matched region
imshow(gray_image)
template_width, template_height = template.shape
rect = plt.Rectangle((y, x), template_height, template_width, color='y',
                     fc='none')
plt.gca().add_patch(rect)
plt.show()

在这里插入图片描述

# Import libraries
import numpy as np
import matplotlib.pyplot as plt
from skimage.io import imread, imshow
from skimage.color import rgb2gray
from skimage.feature import match_template
from skimage.feature import peak_local_max

# Load the original image
original_image = imread('121.jpg')

# Convert the image to grayscale
gray_image = rgb2gray(original_image[:,:,:3])
plt.figure(figsize=(10,10))
plt.imshow(gray_image, cmap='gray')
plt.title('Grayscale Image', fontsize=20, weight='bold')
plt.axis('off')
plt.show()

# Define the template
template = gray_image[:80, -80:]

# Show the template
plt.figure(figsize=(5,5))
plt.imshow(template, cmap='gray')
plt.title('Template Image', fontsize=20, weight='bold')
plt.axis('off')
plt.show()

# Perform template matching
result = match_template(gray_image, template)

# Display the result
plt.figure(figsize=(10,10))
imshow(result, cmap='viridis')
plt.show()

# Set a threshold for peak detection
# Set a lower threshold for peak detection
threshold = 0.9

# Find the location of the template with peak_local_max
imshow(gray_image)
template_width, template_height = template.shape
for x, y in peak_local_max(result, threshold_abs=threshold):
    rect = plt.Rectangle((y, x), template_height, template_width, color='red',
                         fc='none')
    plt.gca().add_patch(rect)

plt.show()

可以设置阈值

threshold = 0.5

在这里插入图片描述

threshold = 0.9

在这里插入图片描述
至于最右上角的为什么识别不出来,是因为上面模板匹配找设置的时候,右边的笑脸框进去了,但是最右上角的没有左半边笑脸,就自动被排除在外了。

原图显示;

# Import libraries
import numpy as np
import matplotlib.pyplot as plt
from skimage.io import imread, imshow
from skimage.color import rgb2gray
from skimage.feature import match_template
from skimage.feature import peak_local_max

# Load the original image
original_image = imread('121.jpg')

# Convert the image to grayscale
gray_image = rgb2gray(original_image[:,:,:3])
plt.figure(figsize=(10,10))
plt.imshow(gray_image, cmap='gray')
plt.title('Grayscale Image', fontsize=20, weight='bold')
plt.axis('off')
plt.show()

# Define the template
template = gray_image[:80, -80:]

# Perform template matching
result = match_template(gray_image, template)

# Set a lower threshold for peak detection
threshold = 0.75

# Find the location of the template with peak_local_max
imshow(gray_image)
template_width, template_height = template.shape
for x, y in peak_local_max(result, threshold_abs=threshold):
    rect = plt.Rectangle((y, x), template_height, template_width, color='red',
                         fc='none')
    plt.gca().add_patch(rect)

# Overlay the result on the original image
plt.figure(figsize=(20, 20))
plt.imshow(original_image)
plt.title('We found our heart eyes emojis!', fontsize=20, weight='bold', color='red')
for x, y in peak_local_max(result, threshold_abs=threshold):
    rect = plt.Rectangle((y, x), template_height, template_width, color='red',
                         fc='none')
    plt.gca().add_patch(rect)

plt.show()

在这里插入图片描述

结论

通过使用OpenCV进行模板匹配,我们可以有效地在图像中定位目标模板的位置。该方法广泛应用于目标检测、物体识别和图像分析等领域。在实际应用中,根据具体需求选择合适的相似性度量方法和调整算法参数,可以获得更精确的匹配结果。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/145889.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

AD9371 AGC

AD9371 系列快速入口 AD9371ZCU102 移植到 ZCU106 : AD9371 官方例程构建及单音信号收发 ad9371_tx_jesd -->util_ad9371_xcvr接口映射: AD9371 官方例程之 tx_jesd 与 xcvr接口映射 AD9371 官方例程 时钟间的关系与生成 : AD9371 官方…

MHA:故障切换

MHA: masterhight availabulity:基于主库的高可用环境下:主从复制 故障切换 主从的架构。 MHA:最少要一主两从 mysql的单点故障问题,一旦主库崩溃,MHA可以在0-30秒内自动完成故障切换。 工作原理&#…

警方打击了大规模网络钓鱼提供商BulletProftLink

导语 最近,马来西亚皇家警察宣布成功打击了一个名为BulletProftLink的大规模网络钓鱼提供商。这个提供超过300个钓鱼模板的平台被查封,给全球网络安全带来了巨大的利好消息。本文将带您了解这个引人注目的行动背后的故事,并揭示BulletProftLi…

metinfo 6.0.0 任意文件读取漏洞复现

metinfo 6.0.0 任意文件读取漏洞复现 漏洞环境 环境为mrtinfo 6.0.0 漏洞存在的位置 通过代码审计发现在源代码的/app/system/include/module/old_thumb.class.php这个位置有着任意读取文件漏洞 漏洞点:http://127.0.0.1/metinfo_6.0.0//include/thumb.php 漏洞复现 访…

网工内推 | 网工校招,金融、软件行业,HCIE认证优先,最高15薪

01 长威信息科技 招聘岗位:网络工程师(24届校招) 职责描述: 1、负责网络类、安全类产品的安装部署、调试和运行维护,以及网络故障分析、定位和处理; 2、负责实施项目各类文档编制工作,包括技术…

R语言爬虫程序自动爬取图片并下载

R语言本身并不适合用来爬取数据,它更适合进行统计分析和数据可视化。而Python的requests,BeautifulSoup,Scrapy等库则更适合用来爬取网页数据。如果你想要在R中获取网页内容,你可以使用rvest包。 以下是一个简单的使用rvest包爬取…

软考架构师学习心得和资料分享

23年11月的软考架构师终于考完了,相信很多朋友都觉得这次考试的内容有点难,我是从9月份报名后才开始准备的,一边工作一边学习确实压力很大,感觉更难了。 报名后还在闲鱼上买了份学习资料,后来又在芝士架构群里找了一些…

【IDEA】IntelliJ IDEA的使用2.0——结合实际场景提升工具使用

前言 IDEA作为一款非常不错的Java开发编辑工具,需要不断学习如何更好地使用IEDA工具,打造成得心应手的斧头。 本篇博客是结合实际场景提升IDEA使用的博客,会陆续收集一些实际使用场景,结合这些场景阐述如何更好地使用IDEA工具。…

软件工程理论与实践 (吕云翔) 第四章 结构化分析课后习题及答案

第四章 结构化分析 知识点: ​ 结构化分析模型的核心为数据字典,它是描述软件使用和产生的所有数据对象。围绕着这个核心有3种不同的图:“数据流图”指出当数据在软件系统中移动时怎样被变换,并描绘变换数据流的功能和子功能&am…

欧拉回路和欧拉路径

目录 欧拉回路基础 欧拉回路的定义 欧拉回路的性质 判断图中是否存在欧拉回路的java代码实现 寻找欧拉回路的三个算法 Hierholzer算法 详细思路 代码实现 欧拉路径 欧拉路径的定义 欧拉路径的性质 欧拉回路基础 欧拉回路的定义 欧拉回路遍历了所有的边,…

C语言从文件 D://test.txt 读取字符串,将字符串中所有的大写字符改为小写字母并写回到源文件中

完整代码&#xff1a; /*从文件 D://test.txt 读取字符串&#xff0c;将字符串中所有的大写字母改为小写字母并写回 到源文件中*/ #include<stdio.h>//将字符串中所有的大写字母改为小写字母 void func(char *buff){while (*buff!\0){if (*buff>A&&*buff<…

Netty Review - 核心组件扫盲

文章目录 PreNetty Reactor 的工作架构图CodePOMServerClient Netty 重要组件taskQueue任务队列scheduleTaskQueue延时任务队列Future异步机制Bootstrap与ServerBootStrapgroup()channel()option()与childOption()ChannelPipelinebind()优雅地关闭EventLoopGroupChannleChannel…

微信昵称后面的“小耳朵”是干什么用的?

微信&#xff0c;一款我们日常使用频繁的社交软件&#xff0c;它的功能远不止于聊天、刷朋友圈、支付和刷视频。其实&#xff0c;微信的许多不常用功能可以解决我们的实际问题。 聊天时&#xff0c;我发现朋友微信昵称后面多了一个神秘的小耳朵图标&#xff0c;引发了我的好奇心…

基于 Redis 实现的分布式锁

获取锁 互斥&#xff1a;确保只有一个线程获得锁 # 添加锁 利用setnx的互斥性 127.0.0.1:6379> setnx lock thread1释放锁 手动释放锁 超时释放&#xff1a;获取锁时设置一个超时时间 #释放锁 删除即可 127.0.0.1:6379> del lock两步合成一步 help setSET key value …

(六)七种元启发算法(DBO、LO、SWO、COA、LSO、KOA、GRO)求解无人机路径规划MATLAB

一、七种算法&#xff08;DBO、LO、SWO、COA、LSO、KOA、GRO&#xff09;简介 1、蜣螂优化算法DBO 蜣螂优化算法&#xff08;Dung beetle optimizer&#xff0c;DBO&#xff09;由Jiankai Xue和Bo Shen于2022年提出&#xff0c;该算法主要受蜣螂的滚球、跳舞、觅食、偷窃和繁…

达索系统SOLIDWORKS 2024钣金和结构系统新功能

达索系统SOLIDWORKS钣金和结构系统是大家比较熟悉的模块了&#xff0c;在2024版本中钣金和结构系统功能也做了很棒的提升。接下来让我们看看如何使用达索系统SOLIDWORKS 2024钣金和结构系统的一些新功能快速完成相应的设计。 达索系统SOLIDWORKS 2024的钣金提供了槽口延伸功能…

JavaWeb——CSS3的使用

目录 1. CSS概述 2. CSS引入方式 3. CSS颜色显示 4. CSS选择器 4.1. 元素&#xff08;标签&#xff09;选择器 4.2. id选择器 4.3. 类选择器 4.4. 三者优先级 5. 盒子模型 1. CSS概述 CSS&#xff0c;全称为“Cascading Style Sheets”&#xff0c;中文译为“层叠样式…

CM211-1 MC022主板输入刷Armbian

咋一看以为是NAND的存储&#xff0c;经过各方搜索&#xff0c;发现BWCMMQ511G08G存储芯片是狭义的NAND&#xff0c;支持emmc协议&#xff0c;故而做尝试。 烧写步骤 1.下载Armbian镜像 Armbian_23.11.0_amlogic_s905l3-cm211_lunar_6.1.60_server_2023.11.01.img.gz 2.将镜像…

影响因子10月修正!多本期刊上涨,最高IF达54.8!

【SciencePub学术】 每年的影响因子基本都在6月底发布&#xff0c;但是由于数据不全等原因&#xff0c;部分期刊未能及时获得影响因子&#xff0c;或者影响因子有一定误差。因此&#xff0c;每年科睿唯安还会在10或11月份对当年的影响因子进行更新&#xff0c;主要包括补录和修…

在CentOS7环境下安装Mysql

1.卸载已有的不需要的环境 使用如下命令&#xff0c;查看系统中是否已经存在mysql和mariadb&#xff08;mysql的一个子分支&#xff09; ps ajx | grep mariadb ps ajx | grep mysql 如果显示与我相同&#xff0c;则代表系统中已经存在这些环境并且已经停止 如果不相同则需要…