传输层协议-UDP协议

目录

  • 传输层
    • 再谈端口号
    • 端口号范围划分
    • 认识知名端口号
  • UDP协议
    • UDP协议格式
      • UDP数据封装
      • UDP数据分用
    • UDP协议的特点
      • 面向数据报
    • UDP缓冲区
    • UDP使用注意事项
    • 基于UDP的应用层协议

传输层

在这里插入图片描述
实际上我们应用层的数据并不是直接发给网络的,而是需要先将数据发送给传输层,传输层进行进一步处理再讲数据向下交付,该过程贯穿整个网络协议栈,最终才能将数据发送到网络当中。

再谈端口号

端口号(Port)标识一个主机上进行网络通信的不同的应用程序。当主机从网络中获取到数据后,需要自底向上进行数据的交付,而这个数据最终应该交给上层的哪个应用处理程序,就是由该数据当中的目的端口号来决定的。
在这里插入图片描述
在TCP/IP协议中,用“源IP地址”,“源端口号”,“目的IP地址”,“目的端口号”,“协议号”这样一个五元组来标识一个通信。

比如有多台客户端主机同时访问服务器,这些客户端主机上可能有一个客户端进程,也可能有多个客户端进程,它们都在访问同一台服务器。在这里插入图片描述

  • 先提取出数据当中的目的IP地址和目的端口号,确定该数据是发送给当前服务进程的。
  • 然后提取出数据当中的协议号,为该数据提供对应类型的服务。
  • 最后提取出数据当中的源IP地址和源端口号,将其作为响应数据的目的IP地址和目的端口号,将响应结果发送给对应的客户端进程。

在这里插入图片描述
通过netstat命令可以查看到这样的五元组信息。

语法:netstat [选项]
功能:查看网络状态
常用选项:

  • n 拒绝显示别名,能显示数字的全部转化成数字;
  • l 仅列出有在 Listen (监听) 的服务状态;
  • p 显示建立相关链接的程序名;
  • t (tcp)仅显示tcp相关选项;
  • u (udp)仅显示udp相关选项;
  • a (all)显示所有选项,默认不显示LISTEN相关。

在这里插入图片描述
其中Proto表示协议类型,Local Adderss表示源IP地址和源端口号,Foreign Adderss表示目的IP地址和目的端口号。

端口号范围划分

  • 0 - 1023: 知名端口号,HTTP,FTP,SSH等这些广为使用的应用层协议,他们的端口号都是固定的。
  • 1024 ~ 65535:操作系统动态分配的端口号。客户端程序的端口号就是由操作系统从这个范围分配的。

认识知名端口号

有些服务器是非常常用的,这些服务器的端口号一般都是固定的:

  • ssh服务器,使用22端口。
  • ftp服务器,使用21端口。
  • telnet服务器,使用23端口。
  • http服务器,使用80端口。
  • https服务器,使用443端口。

一个进程是否可以bind多个端口号?

一个端口号绝对不能被多个进程绑定,因为端口号的作用就是唯一标识一个进程,如果绑定一个已经被绑定的端口号,就会出现绑定失败的问题。

一个进程是否可以绑定多个端口号?

一个进程是可以绑定多个端口号的,这与“端口号必须唯一标识一个进程”是不冲突的,只不过现在这多个端口唯一标识的是同一个进程罢了。

我们限制的是从端口号到进程的唯一性,而没有要求从进程到端口号也必须满足唯一性,因此一个进程是可以绑定多个端口号的。

pidof命令

在查看服务器的进程id时非常方便:

语法:pidof [进程名]
功能:通过进程名, 查看进程id。

在这里插入图片描述
pidof命令可以配合kill命令快速杀死一个进程。

在这里插入图片描述

UDP协议

UDP协议格式

UDP协议格式如下:
在这里插入图片描述

  • 16位源端口号:表示数据从哪里来。
  • 16位目的端口号:表示数据要到哪里去。
  • 16位UDP长度:表示整个数据报(UDP首部+UDP数据)的长度。
  • 16位UDP检验和:如果UDP报文的检验和出错,就会直接将报文丢弃。

我们在应用层看到的端口号大部分都是16位的,其根本原因就是因为传输层协议当中的端口号就是16位的。

对于任何协议,几乎都要解决两个问题:

  1. 如何分离(封装);
  2. 如何交付。

如何分离?

我们所说的分离其实就是将报头与有效荷载进行分离,UDP的报头含有四个字段,每个字段的长度是16为,共8个字节。因为报头就是固定的8个字节,UDP在读取完8个字节长度以后剩下的就是有效荷载了。

如何交付?

UDP需要将有效荷载交付给上层对应的协议,也就是交给响应的进程。应用层中的每一个网络进程都会绑定一个端口,对于客户端进程来说,端口是操作系统动态进行分配的,而服务端就需要我们显示的绑定端口,UDP就是通过报头当中的目的端口号来找到对应的应用层进程的。因为内核中用哈希的方式维护了端口号与进程ID之间的映射关系,因此传输层可以通过端口号得到对应的进程ID,进而找到对应的应用层进程。

理解报头

操作系统是C语言写的,而UDP协议又是属于内核协议栈的,因此UDP协议也一定是用C语言编写的,UDP报头实际就是一个位段类型。
在这里插入图片描述

UDP数据封装

  • 当应用层数据交付给传输层以后,在传输层就会创建一个UDP报头类型的变量,然后填充报头当中的各个字段,此时就得到了一个UDP报头。
  • 此时操作系统再在内核当中开辟一块空间,将UDP报头和有效载荷拷贝到一起,此时就形成了UDP报文。

UDP数据分用

当传输层从下层获取到一个报文以后,就会读取出前8个字节,提取出对应的目的端口号,通过目的端口号找到对应上层应用层进程,然后将剩下的有效载荷向上交付给该应用层进程。

UDP协议的特点

UDP传输的过程就类似于寄信,其特点如下:

  • 无连接:知道对端的IP和端口号就直接进行数据传输,不需要建立连接。
  • 不可靠:没有确认机制,没有重传机制;如果因为网络故障该段无法发到对方,UDP协议层也不会给应用层返回任何错误信息。
  • 面向数据报:不能够灵活的控制读写数据的次数和数量。

面向数据报

应用层交给UDP多长的报文,UDP就原样发送,既不会拆分,也不会合并,这就叫做面向数据报。

比如用UDP传输100个字节的数据:

  • 如果发送端调用一次sendto,发送100字节,那么接收端也必须调用对应的一次recvfrom,接收100个字节;而不能循环调用10次recvfrom,每次接收10个字节。

UDP缓冲区

  • UDP没有真正意义上的发送缓冲区。调用sendto会直接交给内核,由内核将数据传给网络层协议进行后续的传输动作。
  • UDP具有接收缓冲区。但是这个接收缓冲区不能保证收到的UDP报的顺序和发送UDP报的顺序一致;如果缓冲区满了,再到达的UDP数据就会被丢弃。
  • UDP的socket既能读,也能写,因此UDP是全双工的。

其实我们平时所说的read/write/recv/send/recvfrom/sendto等诸多IO类接口并不是直接在网络中进行数据收发的,本质上他们属于拷贝函数,将数据拷贝到对应的接收和发送缓冲区中,然后由相应的缓冲区进行数据交互。

为什么UDP要有接收缓冲区?

如果UDP中不存在接收缓冲区,上层在接收数据是就需要及时的将UDP读取到的报文给读取上去,否则就会出现上一个报文还没有被读取,下一个报文已经来了,此时刚从底层获取的报文就会被丢弃。我们在传输过程中是会消耗资源的,如果出现因为报文未被及时读取而被丢弃的问题,就是在浪费资源。

因此UDP本身是会维护一个接收缓冲区的,当有新的UDP报文到来时就会把这个报文放到接收缓冲区当中,此时上层在读数据的时就直接从这个接收缓冲区当中进行读取就行了,而如果UDP接收缓冲区当中没有数据那上层在读取时就会被阻塞。因此UDP的接收缓冲区的作用就是,将接收到的报文暂时的保存起来,供上层读取。

UDP使用注意事项

需要注意的是,UDP协议报头当中的UDP最大长度是16位的,因此一个UDP报文的最大长度是64K(包含UDP报头的大小)。

然而64K在当今的互联网环境下,是一个非常小的数字。如果需要传输的数据超过64K,就需要在应用层进行手动分包,多次发送,并在接收端进行手动拼装。

基于UDP的应用层协议

  • NFS:网络文件系统。
  • TFTP:简单文件传输协议。
  • DHCP:动态主机配置协议。
  • BOOTP:启动协议(用于无盘设备启动)。
  • DNS:域名解析协议。

当然,也包括你自己写UDP程序时自定义的应用层协议。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/145326.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

客户下单时如何自动匹配到最近的门店

有些商家有多个门店,当客户下单时,希望能够将客户下的订单分配给最近的门店。下面就具体介绍一下在采云小程中是如何实现的。 首先,为了简便起见,请确定门店高级设置保持着默认设定。因为单独的商品管理模式以及独享的商品信息模…

一篇博客读懂队列——Queue

目录 一、队列的概念和结构 ​二、队列的实现 2.1队列的初始化QueueInit 2.2队列的摧毁QueueDestroy 2.3插入结点QueuePush 2.4删除结点QueuePop 2.5返回队头QueueFront 2.6返回队尾QueueBack 2.7判断队列为空QueueEmpty 2.8统计队列数目QueueSize 一、队列的概念和…

Vue computed 计算属性

1.计算属性的相关知识 概念 :基于现有的数据,计算出来的新属性。依赖数据的变化,自动重新计算。 语法: ① 声明在 computed 配置项 中,一个计算属性对应一个函数 ② 使用起来和普通属性一样使用 {{ 计算属性名 …

Vue3+Element Plus表格多字段组合排序方法

一、问题描述 默认el-table是单个字段排序的,点击表格头排序,老排序字段的排序箭头样式并没有保留,仅仅保留了新点击字段的样式。 二、实现效果 选择多列组合排序时可以高亮多列箭头。 三、解决方法 3.1 如何记录多个字段被选择&#xff…

C++编译器对临时对象的优化

思考:我们在构造运算符重载号重载的时候会构造那些函数呐??? 例子:小dome //该运算重载函数 由 左操作数调用,右操作数当做实参传递给该函数//触发t1t3->t1.operator (t3)Test operator (const Test &a…

js写轮播图,逐步完善

目录 1、自动轮播 2、点击更换 3、自动播放加左右箭头点击切换 4、完整版轮播图 1、自动轮播 用定时器setInterval()来写&#xff0c;可以实现自动播放 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8" /><met…

【开源】基于JAVA的超市商品管理系统

目录 一、摘要1.1 简介1.2 项目详细录屏 二、研究内容2.1 数据中心模块2.2 超市区域模块2.3 超市货架模块2.4 商品类型模块2.5 商品档案模块 三、系统设计3.1 用例图3.2 时序图3.3 类图3.4 E-R图 四、系统实现4.1 登录4.2 注册4.3 主页4.4 超市区域管理4.5 超市货架管理4.6 商品…

http接口测试—自动化测试框架设计

一、测试需求描述 对服务后台一系列的http接口功能测试。 输入&#xff1a;根据接口描述构造不同的参数输入值&#xff08;Json格式&#xff09; 输出&#xff1a;字符串&#xff08;传入的方式传入的字符串&#xff09; http://localhost:8090/lctest/TestServer 二、程序设计…

CTFhub-RCE-命令注入

构造payload :127.0.0.1|ls 127.0.0.1|cat 80203153621323.php F12

成绩发布快捷方式

当一名老师&#xff0c;每到学期中期末&#xff0c;是不是觉得成绩发布就像个老大难&#xff1f;学生急着要知道自己的成绩&#xff0c;家长也频繁私信询问成绩&#xff0c;而传统的成绩发布方式却往往效率低下&#xff0c;费时费力。今天就来聊聊如何通过查询系统、各类代码、…

Python数据容器(集合)

集合 1.集合的定义2.集合中常用操作4.常用功能总结5.集合的特点6.练习 思考&#xff1f; 我们目前接触到了列表、元组、字符串三个数据容器了。基本满足大多数的使用场景。为何要学新的集合类型呢&#xff1f; 通过特性分析 列表可以修改、支持重复元素且有序元组、字符串不可修…

EtherNET转Profibus网关使用 AB PLC的配置方法

兴达易控EtherNET转Profibus网关&#xff08;XD-EPPB20&#xff09;是一款功能强大的通讯设备&#xff0c;具备Profibus从站功能。它的主要作用是将EtherNET/IP设备无缝接入到PROFIBUS网络中。通过连接到Profibus总线&#xff0c;它可以作为从站使用&#xff0c;并且通过连接到…

【C++】一维字符数组 与 二维字符数组

一维字符数组 一维字符数组 可以通过数组名直接进行整体输入和输出&#xff08;注意&#xff1a;当使用一维字符数组存储字符串时&#xff0c;因为元素尾部会有一个空字符\0,所以需要给空字符\0留一个位置&#xff09; char a[5]; cin>>a; cout<<a;二维字符数组 …

书单 | 11月程序员新书播报

11月最新上架计算机书籍 1、人工智能&#xff08;第3版&#xff09; 美国经典人工智能教材第3版&#xff0c;人工智能的百科全书&#xff0c;新增深度学习及人工智能编程等内容&#xff0c;理论阐释结合动手实践&#xff0c;附赠PPT课件、配套视频及代码文件。 1.人工智能经典…

SpringCloud微服务:Ribbon负载均衡

目录 负载均衡策略&#xff1a; 负载均衡的两种方式&#xff1a; 饥饿加载 1. Ribbon负载均衡规则 规则接口是IRule 默认实现是ZoneAvoidanceRule&#xff0c;根据zone选择服务列表&#xff0c;然后轮询 2&#xff0e;负载均衡自定义方式 代码方式:配置灵活&#xff0c;但修…

tensorflow 1.15 gpu docker环境搭建;Nvidia Docker容器基于TensorFlow1.15测试GPU;——全流程应用指南

前言: TensorFlow简介 TensorFlow 在新款 NVIDIA Pascal GPU 上的运行速度可提升高达 50%&#xff0c;并且能够顺利跨 GPU 进行扩展。 如今&#xff0c;训练模型的时间可以从几天缩短到几小时 TensorFlow 使用优化的 C 和 NVIDIA CUDA 工具包编写&#xff0c;使模型能够在训练…

轻量封装WebGPU渲染系统示例<31>- 若干线条对象(源码)

线条对象包括: AABB包围盒&#xff0c;OBB包围盒, 曲线&#xff0c;直线&#xff0c;圆&#xff0c;坐标轴&#xff0c;视锥体线框&#xff0c;矩形网格等。 当前示例源码github地址: https://github.com/vilyLei/voxwebgpu/blob/feature/rendering/src/voxgpu/sample/LineOb…

rk3588 usb网络共享连接

出门在外总会遇到傻 X 地方 没有能连接公网的 网口给香橙派连网 而我的香橙派5plus 没有wifi模块。。。话不多说 在手机上看一眼手机的mac地址&#xff0c; 在rk3588 上执行以下命令&#xff1a; sudo ifconfig usb0 down sudo ifconfig usb0 hw ether 58:F2:FC:5D:D4:7A //该m…

【备忘】ChromeDriver 官方下载地址 Selenium,pyppetter依赖

https://googlechromelabs.github.io/chrome-for-testing/#stable windows系统选择win64版本下载即可

口袋参谋:99.99%的商家,都不知道这个选品神器!!!

​至少有99.99%的商家是不知道如何选品的&#xff1f;很多人都是看人家卖什么&#xff0c;自己就卖什么&#xff1f;就比如卖连衣裙的&#xff0c;试问咱们卖之前都不做一下调查吗&#xff1f; 现在同质化的商品太多了&#xff0c;随便搜一个&#xff0c;就有成千上万的竞争者…