Problem - E - Codeforces
区间求和,区间异或的操作跟线段树的区间求和、区间相见相似,考虑用线段树。
发现数组初始值最多是1e6,有不到25位,可以知道异或最大值是这些位数全是1的情况。
发现可以对每一位进行运算就和。
我们开23个线段树表示每一位的情况,根据位运算求出每一位的贡献即可。
注意ans需要开LL,且数组不能开大,不能全用long long
。
#include <iostream>
#include <vector>
#include <string>
#include <cstring>
#include <set>
#include <map>
#include <queue>
#include <ctime>
#include <random>
#include <sstream>
#include <numeric>
#include <stdio.h>
#include <functional>
#include <bitset>
#include <algorithm>
using namespace std;
// #define Multiple_groups_of_examples
// #define int_to_long_long
#define IOS std::cout.tie(0);std::cin.tie(0)->sync_with_stdio(false); // 开IOS,需要保证只使用Cpp io流 *
#define dbgnb(a) std::cout << #a << " = " << a << '\n';
#define dbgtt cout<<" !!!test!!! "<<'\n';
#define rep(i,x,n) for(int i = x; i <= n; i++)
#define all(x) (x).begin(),(x).end()
#define pb push_back
#define vf first
#define vs second
typedef long long LL;
#ifdef int_to_long_long
#define int long long
#endif
typedef pair<int,int> PII;
const int INF = 0x3f3f3f3f;
const int N = 2e5 + 21;
// 异或 线段树板子
struct SegTree {
static const int N = 1e5 + 21;
struct node {
int l, r;
LL sum,lz;
}tr[N << 2];
// 左子树
int w[N];
inline int ls(int p) {return p<<1; }
// 右子树
inline int rs(int p) {return p<<1|1; }
// 向上更新
void pushup(int u) {
tr[u].sum = tr[ls(u)].sum + tr[rs(u)].sum;
}
// 向下回溯时,先进行更新
void pushdown(int u) { // 懒标记,该节点曾经被修改,但其子节点尚未被更新。
auto &root = tr[u], &right = tr[rs(u)], &left = tr[ls(u)];
if(root.lz) {
right.lz ^=1; right.sum = (right.r - right.l + 1 - right.sum);
left.lz ^= 1; left.sum = (left.r - left.l + 1 - left.sum);
root.lz = 0;
}
}
// 建树
void build(int u, int l, int r) {
if(l == r) tr[u] = {l, r, w[r], 0};
else {
tr[u] = {l,r}; // 容易忘
int mid = l + r >> 1;
build(ls(u), l, mid), build(rs(u), mid + 1, r);
pushup(u);
}
}
// 修改
void modify(int u, int l, int r, int d) {
if(tr[u].l >= l && tr[u].r <= r) {
tr[u].lz ^= 1;
tr[u].sum = (tr[u].r - tr[u].l + 1 - tr[u].sum);
}
else {
pushdown(u);
int mid = tr[u].l + tr[u].r >> 1;
if(l <= mid) modify(ls(u), l ,r, d);
if(r > mid) modify(rs(u), l, r, d);
pushup(u);
}
}
// 查询
LL query(int u, int l, int r) {
if(tr[u].l >= l && tr[u].r <= r) {
return tr[u].sum;
}
pushdown(u);
int mid = tr[u].l + tr[u].r >> 1;
LL sum = 0;
if(l <= mid) sum = query(ls(u), l, r);
if(r > mid ) sum += query(rs(u), l, r);
return sum;
}
}tree[23];
void inpfile();
void solve() {
int n; cin>>n;
vector<int> ad(n + 1);
for(int i = 1; i <= n; ++i) cin>>ad[i];
for(int i = 1; i <= n; ++i) {
for(int j = 0; j < 22; ++j) {
// ad[i] 的第j位是0还是1
tree[j].w[i] = (ad[i] >> j) & 1;
}
}
// 建树
for(int i = 0; i < 22; ++i) tree[i].build(1,1,n);
int q; cin>>q;
while(q--) {
int opt, x, y, v;
cin>>opt>>x>>y;
if(opt == 1) {
LL ans = 0;
// 求出每一位的贡献相加即为答案
for(int i = 0; i < 22; ++i) ans += (LL)tree[i].query(1,x,y) * (1 << i);
cout<<ans<<endl;
} else {
cin>>v;
for(int i = 0; i < 22; ++i) {
// 每一位进行修改
int t = (v >> i) & 1;
if(!t) continue;
tree[i].modify(1,x,y,1);
}
}
}
}
#ifdef int_to_long_long
signed main()
#else
int main()
#endif
{
#ifdef Multiple_groups_of_examples
int T; cin>>T;
while(T--)
#endif
solve();
return 0;
}
void inpfile() {
#define mytest
#ifdef mytest
freopen("ANSWER.txt", "w",stdout);
#endif
}
XOR on Segment - 洛谷 | 计算机科学教育新生态 (luogu.com.cn)
CF242E XOR on Segment (拆位线段树)_牛客博客 (nowcoder.net)