性能爆炸!Python多进程模式实现多核CPU并行计算

文章目录

  • 前言
  • 一、.Python中的多进程模式
  • 二、提高程序执行效率的方法
    • 1.多进程并发执行任务
    • 2.进程池
  • 3.消息队列
    • 4.共享内存
    • 5.异步IO
  • 总结
      • 关于Python技术储备
        • 一、Python所有方向的学习路线
        • 二、Python基础学习视频
        • 三、精品Python学习书籍
        • 四、Python工具包+项目源码合集
        • ①Python工具包
        • ②Python实战案例
        • ③Python小游戏源码
        • 五、面试资料
        • 六、Python兼职渠道


前言

随着计算机硬件的不断发展,多核CPU已经成为普及的硬件设备,利用多核CPU的优势可以有效的提高程序的执行效率。

而多进程模式可以实现多核CPU的并行计算。Python作为一门高级编程语言,提供了多进程、多线程等多种方式来实现并行计算。

在本文中,我们将重点介绍在Python中如何利用多进程模式提高程序的执行效率。
在这里插入图片描述


一、.Python中的多进程模式

在Python中,可以使用multiprocessing模块来实现多进程。multiprocessing是Python标准库中的一个模块,用于管理多进程的创建和通信。

在multiprocessing中,可以使用Process类来创建进程,Process类的构造函数可以接受一个函数作为参数。

该函数将在子进程中执行。下面是一个简单的示例:

import multiprocessing
def worker():
    print("Worker process started")
if __name__ == '__main__':
    p = multiprocessing.Process(target=worker)
    p.start()
    p.join()

在上面的示例中,我们首先定义了一个worker函数,然后使用Process类创建了一个进程,并将worker函数作为参数传递给Process类的构造函数。

最后,我们调用Process类的start方法启动进程,并调用Process类的join方法等待进程结束。

二、提高程序执行效率的方法

在Python中使用多进程模式提高程序执行效率,可以通过以下几种方式来实现:

1.多进程并发执行任务

在多进程模式下,可以将任务分配给多个进程并行执行,从而利用多核CPU的优势。

在Python中,可以使用multiprocessing模块来实现多进程并发执行任务。

下面是一个简单的示例:

import multiprocessing
def worker(name):
    print("Worker %s started" % name)
if __name__ == '__main__':
    for i in range(5):
        p = multiprocessing.Process(target=worker, args=(i,))
        p.start()

在上面的示例中,我们定义了一个worker函数,该函数接受一个参数name,并在函数体中打印出Worker name started的信息。

然后我们使用for循环创建了5个进程,并将worker函数和对应的参数传递给Process类的构造函数。

最后,我们调用Process类的start方法启动进程。

2.进程池

对于大量重复的任务,可以使用进程池来维护一定数量的进程,每个进程执行一个任务后返回结果,然后再由进程池分配下一个任务。

这样可以避免频繁地创建和销毁进程,提高效率。在Python中,可以使用multiprocessing模块的Pool类来实现进程池。

下面是一个简单的示例:

import multiprocessing
def worker(name):
    print("Worker %s started" % name)
if __name__ == '__main__':
    with multiprocessing.Pool(processes=4) as pool:
        pool.map(worker, range(10))

在上面的示例中,我们定义了一个worker函数,该函数接受一个参数name,并在函数体中打印出Worker name started的信息。

然后我们使用with语句创建了一个进程池,并指定进程池中的进程数量为4。

最后,我们使用Pool类的map方法将worker函数和对应的参数传递给进程池,进程池会自动分配任务给不同的进程执行。

3.消息队列

在多进程模式下,不同的进程之间需要进行通信,可以利用消息队列来实现进程间通信。

Python中可以使用Queue模块来实现消息队列。下面是一个简单的示例:

import multiprocessing
def producer(queue):
    for i in range(10):
        queue.put(i)
def consumer(queue):
    while not queue.empty():
        print(queue.get())
if __name__ == '__main__':
    queue = multiprocessing.Queue()
    p1 = multiprocessing.Process(target=producer, args=(queue,))
    p2 = multiprocessing.Process(target=consumer, args=(queue,))
    p1.start()
    p2.start()
    p1.join()
    p2.join()

在上面的示例中,我们定义了一个producer函数和一个consumer函数,producer函数将0~9的数字放入消息队列,consumer函数从消息队列中取出数字并打印出来。

然后我们使用multiprocessing模块的Queue类创建了一个消息队列,并使用Process类创建了两个进程分别执行producer函数和consumer函数。

4.共享内存

对于需要多个进程共享的数据,可以使用共享内存来避免数据拷贝和进程间通信的开销。

在Python中,可以使用multiprocessing模块的Value和Array类来实现共享内存。

下面是一个简单的示例:

import multiprocessing
def worker(counter):
    counter.value += 1
if __name__ == '__main__':
    counter = multiprocessing.Value('i', 0)
    processes = []
    for i in range(5):
        p = multiprocessing.Process(target=worker, args=(counter,))
        processes.append(p)
        p.start()
    for p in processes:
        p.join()
    print(counter.value)

在上面的示例中,我们定义了一个worker函数,该函数接受一个参数counter,每次执行时将counter的值加1。

然后我们使用multiprocessing模块的Value类创建了一个整型变量counter,并使用Process类创建了5个进程分别执行worker函数。

最后,我们打印出counter的值。

5.异步IO

对于I/O密集型任务,可以使用异步IO来提高效率。在Python中,可以使用asyncio模块来实现异步IO。

下面是一个简单的示例:

import asyncio
async def worker():
    await asyncio.sleep(1)
    print("Worker process started")
loop = asyncio.get_event_loop()
loop.run_until_complete(worker())

在上面的示例中,我们定义了一个worker函数,该函数使用asyncio库的异步IO特性。

在函数体中,使用asyncio.sleep函数模拟了一个长时间的I/O操作,并在操作完成后打印了一条消息。

然后我们使用asyncio库的get_event_loop函数创建了一个事件循环,并使用run_until_complete函数启动worker函数。在程序执行过程中,事件循环会负责调度和执行异步IO操作。


总结

在Python中,使用多进程模式可以实现多核CPU的并行计算,从而提高程序的执行效率。

在本文中,我们介绍了如何使用Python的multiprocessing模块实现多进程并发执行任务、进程池、消息队列、共享内存、异步IO等方式来提高程序执行效率。

实际应用中,需要根据具体的场景选择合适的并行计算方式,并注意避免死锁等常见问题。


关于Python技术储备

学好 Python 不论是就业还是做副业赚钱都不错,但要学会 Python 还是要有一个学习规划。最后大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

👉CSDN大礼包:《Python入门资料&实战源码&安装工具】免费领取安全链接,放心点击

一、Python所有方向的学习路线

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

二、Python基础学习视频

② 路线对应学习视频

还有很多适合0基础入门的学习视频,有了这些视频,轻轻松松上手Python~在这里插入图片描述
在这里插入图片描述

③练习题

每节视频课后,都有对应的练习题哦,可以检验学习成果哈哈!
在这里插入图片描述
因篇幅有限,仅展示部分资料

三、精品Python学习书籍

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述

四、Python工具包+项目源码合集
①Python工具包

学习Python常用的开发软件都在这里了!每个都有详细的安装教程,保证你可以安装成功哦!
在这里插入图片描述

②Python实战案例

光学理论是没用的,要学会跟着一起敲代码,动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。100+实战案例源码等你来拿!
在这里插入图片描述

③Python小游戏源码

如果觉得上面的实战案例有点枯燥,可以试试自己用Python编写小游戏,让你的学习过程中增添一点趣味!
在这里插入图片描述

五、面试资料

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。
在这里插入图片描述
在这里插入图片描述

六、Python兼职渠道

而且学会Python以后,还可以在各大兼职平台接单赚钱,各种兼职渠道+兼职注意事项+如何和客户沟通,我都整理成文档了。
在这里插入图片描述
在这里插入图片描述
这份完整版的Python全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/140650.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

深度学习之基于Pytorch服装图像分类识别系统

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。 文章目录 一项目简介系统组成1. 数据集准备2. 数据预处理3. 模型构建4. 模型训练5. 模型评估 PyTorch的优势 二、功能三、系统四. 总结 一项目简介 深度学习在计算机视觉领域的…

测试面试越自信越好吗?

前几天面试了一位小伙子,我觉得比较有代表性,所以拿出来跟大家分享一下。 我们公司的招聘流程是首先HR主动寻找或者挑选投简历者中比较合适的人来公司应聘,先是笔试,笔试包括英文部分和专业知识部分,根据做题的结果再…

关于ruoyi(若依)框架的介绍,若依项目的入门,ruoyi(若依)框架的优缺点

一,关于ruoyi(若依)框架的介绍 若依(Ruoyi)框架是一款基于 Spring Boot 2.5.5、Spring Cloud 2020.0、OAuth2 与 JWT 鉴权等核心技术,同时也支持Spring Security、Apache Shiro 等多种安全框架,…

利用角色roles上线wordpress项目

角色订制:roles ① 简介 对于以上所有的方式有个弊端就是无法实现复用假设在同时部署Web、db、ha 时或不同服务器组合不同的应用就需要写多个yml文件。很难实现灵活的调用。   roles 用于层次性、结构化地组织playbook。roles 能够根据层次型结构自动装载变量文…

RK3568笔记五:基于Yolov5的训练及部署

若该文为原创文章,转载请注明原文出处。 一. 部署概述 环境:Ubuntu20.04、python3.8 芯片:RK3568 芯片系统:buildroot 开发板:ATK-DLRK3568 开发主要参考文档:《Rockchip_Quick_Start_RKNN_Toolkit2_C…

mysql的主从复制,读写分离

主从复制:主mysql的数据,新增,修改,表里的数据都会同步到从mysql上 主从复制的模式: 1 异步复制 mysql 的最常用的复制,只要执行完,客户端提交事务,主mysql 会立即把结果返回给从…

◢Django 自写分页与使用

目录 1、设置分页样式,并展示到浏览器 2、模拟页码 3、生成分页 4、数据显示 5、上一页下一页 6、数据库的数据分页 7、封装分页 8、使用封装好的分页 建立好app后,设置路径path(in2/,views.in2),视图def in2(request): ,HTML: in2.html…

【C++】类和对象(2)--构造函数

目录 一 概念 二 构造函数特性 三 默认构造函数 一 概念 对于以下Date类&#xff1a; class Date { public:void Init(int year, int month, int day){_year year;_month month;_day day;}void Print(){cout << _year << "-" << _month <…

CCLink转Modbus TCP网关_MODBUS网口设置

兴达易控CCLink转Modbus TCP网关是一种用于连接CCLink网络和Modbus TCP网络的设备。它提供了简单易用的MODBUS网口设置&#xff0c;可以帮助用户轻松地配置和管理网络连接 1 、网关做为MODBUS主站 &#xff08;1&#xff09;将电脑用网线连接至网关的P3网口上。 &#xff08;…

stm32 WIFI模块_8266使用

使用以上配置可以正常回应&#xff0c;其中无论勾选或者不勾选DTR/RTS都可以得到正常回应 ATCWMODE?表示查询当前WiFi状态是处于热点模式&#xff08;AP模式&#xff09;或者是连接其他WiFi的那个模式。通过图片看出这个符号不能省略。 设置AP热点命令格式&#xff1a;ATCWSAP…

力扣刷题-二叉树-二叉树的层序遍历(相关题目总结)

思路 层序遍历一个二叉树。就是从左到右一层一层的去遍历二叉树。这种遍历的方式和我们之前讲过的都不太一样。 需要借用一个辅助数据结构即队列来实现&#xff0c;队列先进先出&#xff0c;符合一层一层遍历的逻辑&#xff0c;而用栈先进后出适合模拟深度优先遍历也就是递归的…

超级干货:光纤知识总结最全的文章

你们好&#xff0c;我的网工朋友。 光纤已经是远距离有线信号传输的主要手段&#xff0c;而安装、维护光纤也是很多人网络布线的基本功。 在网络布线中&#xff0c;通常室外楼宇间幢与幢之间使用的是光缆&#xff0c;室内楼宇内部大都使用的是以太网双绞线&#xff0c;也有使用…

【Git】第二篇:基本操作(创建本地仓库)

我们知道&#xff0c;git是一个版本控制器&#xff0c;可以帮我们控制管理电脑上所有格式的文档。 而我们需要使用git管理文件的时候&#xff0c;我们必须将这些文件放到git仓库中&#xff0c;只有在git仓库中的文件才可以被我们的git追踪管理 创建本地仓库 创建本地仓库是需…

Apache Airflow (五) :DAG调度触发时间

&#x1f3e1; 个人主页&#xff1a;IT贫道_大数据OLAP体系技术栈,Apache Doris,Clickhouse 技术-CSDN博客 &#x1f6a9; 私聊博主&#xff1a;加入大数据技术讨论群聊&#xff0c;获取更多大数据资料。 &#x1f514; 博主个人B栈地址&#xff1a;豹哥教你大数据的个人空间-豹…

教育局档案室智慧档案库房建设方案

教育局档案室智慧档案库房建设是指教育局为了更好地保存和管理学校、教师、学生等相关档案资料&#xff0c;以及保证这些档案资料的安全性、可靠性和完整性&#xff0c;而建设的一个专门的存储、管理和保护档案资料的场所。 专久智能提供的教育局档案库房建设方案从以下几个方面…

基于蝴蝶算法优化概率神经网络PNN的分类预测 - 附代码

基于蝴蝶算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于蝴蝶算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于蝴蝶优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要&#xff1a;针对PNN神经网络的光滑…

PCL安装与使用

1 apt安装 ubuntu20.04及以上版本下可以直接通过apt方式安装pcl编译好的二进制文件,二进制安装的版本为1.10。 sudo apt update sudo apt install libpcl-dev 2 源码安装 在pcl的github上下载对应的版本进行安装&#xff1a; https://github.com/PointCloudLibrary/pcl/rel…

分组取每组数据的最大值和最小值的方法思路,为类似场景的数据分析提取提供思路,例如提取宗地内建筑的最高层数等可参考此方法思路

目录 一、实现效果 二、实现过程 1.读取并剔除无效数据 2.数据分组 3.提取最大值 4.提取最小值 三、总结 使用FME实现批量分组取每组数据的最大值和最小值&#xff0c;为类似场景的数据分析提取提供思路&#xff0c;例如提取宗地内建筑的最高层数等可参考此方法思路。关…

酉矩阵(Unitary Matrix)

对于n阶复数矩阵A&#xff0c;如果&#xff0c;其中表示矩阵A的共轭转置&#xff0c;为单位矩阵&#xff0c;那么就称A为酉矩阵。 对于酉矩阵&#xff0c; 如果酉矩阵的元素都是实数&#xff0c;那么该矩阵就是正交矩阵。