计算机视觉:使用opencv实现银行卡号识别

1 概述

1.1 opencv介绍

OpenCV是Open Source Computer Vision Library(开源计算机视觉库)的简称,由Intel公司在1999年提出建立,现在由Willow Garage提供运行支持,它是一个高度开源发行的计算机视觉库,可以实现Windows、Linux、Mac等多平台的跨平台操作。opencv是一个用于图像处理、分析、机器视觉方面的开源函数库,已经成为学习计算机视觉强大的工具。在入侵检测、特定目标跟踪、目标检测、人脸检测、人脸识别、人脸跟踪等领域,opencv可谓大显身手。在这篇文章中,主要使用opencv进行银行卡号识别。

1.2 银行卡号识别步骤

银行卡号的识别过程,主要包含读入图片的基本图像操作,用模板去匹配处理后的银行卡,最终识别出银行卡的卡号。所涉及的图像操作包括:灰度转换、二值转换、阈值分割、轮廓检测、礼帽操作、梯度运算、闭操作、模板匹配。

1.2.1 预处理模板图像

首先需要将模板里的数字单独切出来,然后把银行卡上的数字也单独切出来,最后对银行卡的数字一个一个对比模板(0-9,10个数字)。

原始图像如下:

存储路径为:"../data/card_template.jpg"

假设把模板的每个数字切成矩形,可以先对每个数字求外轮廓,然后根据轮廓可得外接矩形,便可切出,其中对于外轮廓处理需传入二值图。于是步骤如下:

  • 读入图像模板
template = cv2.imread('../data/card_template.jpg')
ShowImage('template', template)

  • 转化为灰度图
# 将图像转化为灰度图
image_Gray = cv2.cvtColor(template,   cv2.COLOR_RGB2GRAY)   
ShowImage('gray', image_Gray)

  • 转化为二值图 
# 转换为二值化图像,[1]表示返回二值化图像,[0]表示返回阈值177
image_Binary = cv2.threshold(image_Gray, 177, 255, cv2.THRESH_BINARY_INV)[1]   
ShowImage('binary', image_Binary)

  • 画出0-9这10个数字的外轮廓
# 提取轮廓
refcnts, his = cv2.findContours(image_Binary.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(template, refcnts, -1, (0,0,255), 2)
ShowImage('contour', template)

  • 计算外接矩形并且resize成合适大小
# 遍历每一个轮廓
for (i, c) in enumerate(refCnts):
	# 计算外接矩形并且resize成合适大小
	(x, y, w, h) = cv2.boundingRect(c) #外接矩形
	roi = ref[y:y + h, x:x + w]
	roi = cv2.resize(roi, (57, 88))
	# 每一个数字对应每一个模板
	digits[i] = roi

 1.2.2 预处理银行卡图像

对于银行卡图像,需要过滤掉背景,保留主要信息(下文1-6步)。上文模板是按矩形切出来的,那么卡号也按矩形切割,便于匹配。银行卡卡号位置是四位一组,可以先处理一组,再对每一组的每一个数字切割,进行模板匹配。其中可以通过长宽比过滤掉银行卡上不是卡号的其他信息。

银行卡图片存储路径:“../data/credit03.jpg”

  • 读入需识别的银行卡并化为灰度图
# 读取图像,进行预处理
image = cv2.imread("../data/credit03.jpg")
ShowImage('card', image)

显示结果如下:

image = resize(image, width=300)
# 将图像转化为灰度图
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)      
ShowImage('card_gray', gray)

显示结果如下:

  • 礼帽操作:礼帽操作可以突出更明亮的区域(原始输入-开运算(先腐蚀再膨胀))
# 通过顶帽操作,突出更明亮的区域
tophat = cv2.morphologyEx(gray, cv2.MORPH_TOPHAT, rectKernel)
ShowImage('tophat_card', tophat)

 显示结果如下:

  • 梯度运算(Sobel算子):边缘检测,可计算出轮廓

gradx = cv2.Sobel(tophat, ddepth=cv2.CV_32F, dx=1, dy=0, ksize=-1)
grady = cv2.Sobel(tophat, ddepth=cv2.CV_32F, dx=0, dy=1, ksize=-1)
gradx = np.absolute(gradx)
minVal = np.min(gradx)
maxVal = np.max(gradx)
# (minVal, maxVal) = (np.min(gradx), np.max(gradx))
# 保证值的范围在0-255之间
gradx = (255 * ((gradx - minVal) / (maxVal - minVal)))     
gradx = gradx.astype("uint8")

print(np.array(gradx).shape)
ShowImage('gradx_card', gradx)

显示结果如下:

  • 闭操作:通过闭操作(先膨胀,再腐蚀)将数字连在一起,便于后面求矩形框
# 通过闭操作,先膨胀后腐蚀,将数字连接在一块
gradx = cv2.morphologyEx(gradx, cv2.MORPH_CLOSE,rectKernel)
ShowImage('gradx_card', gradx)

显示结果如下:

  • 阈值分割:利用阈值对图片进行二值化处理,聚焦处理部分
# THRESH_OTSU会自动寻找合适的阈值,适合双峰,需要把阈值设置为0
thresh = cv2.threshold(gradx, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
ShowImage('thresh_card', thresh)

显示结果如下:

  • 再进行闭操作:把图中连接的数字填饱满一点
# 再来一个闭合操作,填充白框内的黑色区域
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, sqKernel)
ShowImage('thresh2_card', thresh)

显示结果如下:

  • 计算外轮廓:经过上文一系列操作,对银行卡中是数字的地方有了清晰的候选,同处理模板对象一样把可能是数字的地方通过外轮廓把全部矩形框画出来。后续再做筛选即可。

# 计算轮廓
threshCnts, his = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = threshCnts
cur_img = image.copy()
cv2.drawContours(cur_img, cnts, -1, (0,0,255), 2)
ShowImage('contour_card', cur_img)

显示结果如下:

  • 计算外接矩形并且筛选符合的矩形框 
locs = []
# 遍历轮廓
for (i, c) in enumerate(cnts):   # 函数用于遍历序列中的元素以及它们的下标
    # 计算矩形
    (x, y, w, h) = cv2.boundingRect(c)
    ar = w/float(h)
    # 选择合适的区域,根据实际任务来,这里是四个数字为一组
    if ar > 2.5 and ar < 5.0:
        if (w > 40 and w < 85) and (h > 10 and h < 20):
            # 把符合的留下
            locs.append((x,y,w,h))

# 将符合的轮廓根据x的值,从左到右排序
locs = sorted(locs, key=lambda x: x[0])
  • 对每一个矩形框进行单独处理
output =[]
# 遍历轮廓中的每一个数字
for (i,(gx, gy, gw, gh)) in  enumerate(locs):
    # 初始化链表
    groupOutput = []
    # 根据坐标提取每一个组,往外多取一点,要不然看不清楚
    group = gray[gy-5:gy+gh+5,gx-5:gx+gw+5]
    ShowImage('group', group)
    # 预处理
    group = cv2.threshold(group, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]  # 二值化
    ShowImage('group', group)

    # 找到每一组的轮廓
    digitCnts, his = cv2.findContours(group.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    # digitCnts = sortContours(digitCnts, method="LefttoRight")[0]
    # 对找到的轮廓进行排序
    digitCnts = sort_contours(digitCnts, method="left-to-right")[0] 

1.2.3 模板匹配计算得分

# 计算每一组中的每一个数值
    for c in digitCnts:
        # 找到当前数值的轮廓,resize成合适的大小
        (x,y,w,h) = cv2.boundingRect(c)
        roi = group[y:y+h, x:x+w]
        roi = cv2.resize(roi, (57,88))
        ShowImage('roi', roi)
        scores = []
        for(digit, digitROI) in digits.items():
            # 模板匹配
            #
            result = cv2.matchTemplate(roi, digitROI, cv2.TM_CCOEFF)
            (_, score, _, _) = cv2.minMaxLoc(result)
            scores.append(score)
        # 得到最合适的数字
        groupOutput.append(str(np.argmax(scores)))

1.2.4 绘制结果

# 画矩形和字体
        cv2.rectangle(image, (gx - 5, gy - 5), (gx+gw+5, gy+gh+5), (0,0,255),1)
        cv2.putText(image, "".join(groupOutput), (gx, gy-15), cv2.FONT_HERSHEY_SIMPLEX,0.65, (0,0,255),2)
        # 得到结果
        output.extend(groupOutput)

2 银行卡号识别完整代码

import cv2
import numpy as np


def ShowImage(name, image):
    cv2.imshow(name, image)
    cv2.waitKey(0)  # 等待时间,0表示任意键退出
    cv2.destroyAllWindows()


def sort_contours(cnts, method="left-to-right"):
    # reverse = False 表示升序,若不指定reverse则默认升序
    reverse = False
    i = 0

    if method == "right-to-left" or method == "bottom-to-top":
        reverse = True  # reverse = True 表示降序

    if method == "top-to-bottom" or method == "bottom-to-top":
        i = 1

    # 用一个最小的矩形,把找到的形状包起来,用x,y,h,w表示
    boundingBoxes = [cv2.boundingRect(c) for c in cnts]

    # zip函数用于打包可迭代数据,得到最终输出的cnts和boundingBoxes
    (cnts, boundingBoxes) = zip(*sorted(zip(cnts, boundingBoxes),
                                        key=lambda b: b[1][i], reverse=reverse))

    return cnts, boundingBoxes


def resize(image, width=None, height=None, inter=cv2.INTER_AREA):
    dim = None
    (h, w) = image.shape[:2]  # 获取图像的高度和宽度
    if width is None and height is None:
        return image
    if width is None:
        r = height / float(h)
        dim = (int(w * r), height)
    else:
        r = width / float(w)
        dim = (width, int(h * r))
    resized = cv2.resize(image, dim, interpolation=inter)  # 使用cv库的resize函数
    return resized


template = cv2.imread('../data/card_template.jpg')
ShowImage('template', template)

# 将图像转化为灰度图
image_Gray = cv2.cvtColor(template,   cv2.COLOR_RGB2GRAY)
ShowImage('gray', image_Gray)

# 转换为二值化图像,[1]表示返回二值化图像,[0]表示返回阈值177
image_Binary = cv2.threshold(image_Gray, 177, 255, cv2.THRESH_BINARY_INV)[1]
ShowImage('binary', image_Binary)

# 提取轮廓
refcnts, his = cv2.findContours(image_Binary.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(template, refcnts, -1, (0, 0, 255), 2)
ShowImage('contour', template)

refcnts = sort_contours(refcnts, method="left-to-right")[0]
digits = {}

# 遍历每个轮廓
for (i, c) in enumerate(refcnts):  # enumerate函数用于遍历序列中的元素以及它们的下标
    (x, y, w, h) = cv2.boundingRect(c)
    roi = image_Binary[y:y+h, x:x+w]
    roi = cv2.resize(roi, (57, 88))

    digits[i] = roi

# 初始化卷积核
rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (9,3))
sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5,5))

# 读取图像,进行预处理
image = cv2.imread("../data/credit03.jpg")
ShowImage('card', image)

image = resize(image, width=300)
# 将图像转化为灰度图
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
ShowImage('card_gray', gray)

# 通过顶帽操作,突出更明亮的区域
tophat = cv2.morphologyEx(gray, cv2.MORPH_TOPHAT, rectKernel)
ShowImage('tophat_card', tophat)

gradx = cv2.Sobel(tophat, ddepth=cv2.CV_32F, dx=1, dy=0, ksize=-1)
grady = cv2.Sobel(tophat, ddepth=cv2.CV_32F, dx=0, dy=1, ksize=-1)
gradx = np.absolute(gradx)
minVal = np.min(gradx)
maxVal = np.max(gradx)
# (minVal, maxVal) = (np.min(gradx), np.max(gradx))
# 保证值的范围在0-255之间
gradx = (255 * ((gradx - minVal) / (maxVal - minVal)))
gradx = gradx.astype("uint8")

print(np.array(gradx).shape)
ShowImage('gradx_card', gradx)

# 通过闭操作,先膨胀后腐蚀,将数字连接在一块
gradx = cv2.morphologyEx(gradx, cv2.MORPH_CLOSE,rectKernel)
ShowImage('gradx_card', gradx)

# THRESH_OTSU会自动寻找合适的阈值,适合双峰,需要把阈值设置为0
thresh = cv2.threshold(gradx, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
ShowImage('thresh_card', thresh)

# 再来一个闭合操作,填充白框内的黑色区域
thresh = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, sqKernel)
ShowImage('thresh2_card', thresh)

# 计算轮廓
threshCnts, his = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = threshCnts
cur_img = image.copy()
cv2.drawContours(cur_img, cnts, -1, (0,0,255), 2)
ShowImage('contour_card', cur_img)

locs = []
# 遍历轮廓
for (i, c) in enumerate(cnts):   # 函数用于遍历序列中的元素以及它们的下标
    # 计算矩形
    (x, y, w, h) = cv2.boundingRect(c)
    ar = w/float(h)
    # 选择合适的区域,根据实际任务来,这里是四个数字为一组
    if ar > 2.5 and ar < 5.0:
        if (w > 40 and w < 85) and (h > 10 and h < 20):
            # 把符合的留下
            locs.append((x,y,w,h))

# 将符合的轮廓根据x的值,从左到右排序
locs = sorted(locs, key=lambda x: x[0])

output =[]
# 遍历轮廓中的每一个数字
for (i,(gx, gy, gw, gh)) in  enumerate(locs):
    # 初始化链表
    groupOutput = []
    # 根据坐标提取每一个组,往外多取一点,要不然看不清楚
    group = gray[gy-5:gy+gh+5,gx-5:gx+gw+5]
    ShowImage('group', group)
    # 预处理
    group = cv2.threshold(group, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]  # 二值化
    ShowImage('group', group)

    # 找到每一组的轮廓
    digitCnts, his = cv2.findContours(group.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    # digitCnts = sortContours(digitCnts, method="LefttoRight")[0]
    # 对找到的轮廓进行排序
    digitCnts = sort_contours(digitCnts, method="left-to-right")[0]

    # 计算每一组中的每一个数值
    for c in digitCnts:
        # 找到当前数值的轮廓,resize成合适的大小
        (x,y,w,h) = cv2.boundingRect(c)
        roi = group[y:y+h, x:x+w]
        roi = cv2.resize(roi, (57,88))
        ShowImage('roi', roi)
        scores = []
        for(digit, digitROI) in digits.items():
            # 模板匹配
            #
            result = cv2.matchTemplate(roi, digitROI, cv2.TM_CCOEFF)
            (_, score, _, _) = cv2.minMaxLoc(result)
            scores.append(score)
        # 得到最合适的数字
        groupOutput.append(str(np.argmax(scores)))

        # 画矩形和字体
        cv2.rectangle(image, (gx - 5, gy - 5), (gx+gw+5, gy+gh+5), (0,0,255),1)
        cv2.putText(image, "".join(groupOutput), (gx, gy-15), cv2.FONT_HERSHEY_SIMPLEX,0.65, (0,0,255),2)
        # 得到结果
        output.extend(groupOutput)

ShowImage('card_result', image)

运行结果:


 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/140354.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Django路由层解析

路由层(urls.py) Django的路由层是用于将URL映射到视图函数的机制。它用于确定请求URL&#xff08;HTTP请求&#xff09;应该被哪个视图函数处理。 Django的路由层包括两个部分&#xff1a; URL模式&#xff1a;匹配请求URL&#xff0c;决定应该使用哪个视图函数来处理请求。UR…

Windows配置wxWidgets开发

1、编译 从官网下载wxWidgets源码,解压后进入build/msw目录,按自己安装的VS版本去选择sln打开,在VS的菜单拦找到【生成】菜单下的【批生成】菜单,点击进入, 点选【全选】然后点【生成】按钮。等上两、三个小时在项目目录的lib文件夹就可以看到生成的dll与lib目录,如下: …

CountDownLatch使用

常用于多线程场景&#xff0c;待多线程都结束后方可继续主线程逻辑处理 CodeConstant 常量类 import java.util.HashMap; import java.util.Map;public class CodeConstant {public static final Map<String, Map<String, String>> CODE new HashMap<>();…

真心建议测试工程师学完Pytest框架实战,跳槽必备,学完能涨薪5k

【文章末尾给大家留下了大量的福利】 应用场景&#xff1a; pytest 框架可以解决我们多个测试脚本一起执行的问题。 它提供了测试用例的详细失败信息&#xff0c;使得开发者可以快速准确地改正问题。它兼容最新版本的 Python。它还兼容 unittest、doctest 和 nose&#xff0…

python双端队列_中间是头两边是尾_两边是头中间是尾

双端队列的顺序表存储结构以及两种特殊的双端队列 双端队列 是一种允许我们同时从前端和后端添加和删除元素的特殊队列&#xff0c;它是队列和栈的结合体。 双端队列&#xff08;deque&#xff09;与队列&#xff08;queue&#xff09;就差了两个字&#xff0c;队列里元素只能…

redis之org.springframework.data.redis.RedisSystemException: Error in execution

背景 在运行某系统时&#xff0c;在测试类向redis中存入某值&#xff0c;然后取出。 一、遇到的问题 报错&#xff1a; org.springframework.data.redis.RedisSystemException: Error in execution; nested exception is io.lettuce.core.RedisCommandExecutionException: …

基于Python实现,调用百度通用翻译API-详解

概述 在工作上需要各个国家语言的翻译方面很多地方用的上。 获取API权限: 登录百度账号,在个人信息界面,包括修改密码、绑定手机、身份人证等 https://api.fanyi.baidu.com/api/trans/product/desktop?req=developer 百度翻译开放平台 在开发者中心:需要开通个人账号…

我国陆地遥感卫星发展现状与展望

一、引言 从20世纪90年代末至今&#xff0c;我国陆地遥感卫星事业历经二十多年&#xff0c;实现了从无到有、从小到大、从弱到强的跨越发展。随着高分辨率对地观测系统重大专项&#xff08;高分专项&#xff09;、《陆海观测卫星业务发展规划&#xff08;2011—2020年&#xff…

通过Python设置及读取PDF属性,轻松管理PDF文档

PDF文档属性是嵌入在PDF文档中的一些与文档有关的信息&#xff0c;如作者、制作软件、标题、主题等。PDF属性分为默认属性和自定义属性两种&#xff0c;其中默认属性是一些固定的文档信息&#xff0c;部分信息自动生成&#xff08;如文件大小、页数、页面大小等信息&#xff09…

【ruoyi】微服务关闭登录验证码

登录本地的nacos服务&#xff0c;修改&#xff1a;配置管理-配置列表-ruoyi-gateway-dev.yml 将验证码的enabled设置成false&#xff0c;即可

c语言从入门到实战——初识指针

初识指针 前言1. 内存和地址1.1 内存1.2 究竟该如何理解编址 2. 指针变量和地址2.1 取地址操作符&#xff08;&&#xff09;2.2 指针变量和解引用操作符&#xff08;*&#xff09;2.2.1 指针变量2.2.2 如何拆解指针类型2.2.3 解引用操作符 2.3 指针变量的大小 3. 指针变量类…

酷柚易汛ERP - 序列号跟踪表

1、应用场景 对于3C数码、医疗器械等行业&#xff0c;商品价值高且需要进行售后服务&#xff0c;需要对商品进行序列号管理&#xff0c;通过序列号跟踪表可查询每个序列号入库、出库、退货、调拨、盘点等流向。 2、主要操作 打开【仓库】-【序列号跟踪表】&#xff08;系统设…

c++-哈希

文章目录 前言一、unordered系列关联式容器1、unordered_map2、性能测试 二、哈希1、哈希概念2、哈希冲突3、哈希冲突解决3.1 闭散列3.2 开散列3.3 字符串Hash函数3.4 哈希桶实现的哈希表的效率 三、哈希表封装unordered_map和unordered_set容器1、unordered_map和unordered_se…

查看dll是32位还是64位

根据资料&#xff0c;用记事本打开dll文件&#xff1b;找到字符串 PE&#xff0c;其后不远如果出现L&#xff0c;是32位&#xff1b;字符串PE后出现 d? 是64位&#xff1b; 打开一个看一下&#xff1b;这个是32位&#xff1b; 这是从网上看的&#xff1b; 然后用dumpbin.exe工…

漏洞复现--IP-guard flexpaper RCE

免责声明&#xff1a; 文章中涉及的漏洞均已修复&#xff0c;敏感信息均已做打码处理&#xff0c;文章仅做经验分享用途&#xff0c;切勿当真&#xff0c;未授权的攻击属于非法行为&#xff01;文章中敏感信息均已做多层打马处理。传播、利用本文章所提供的信息而造成的任何直…

基于SSM的超市积分管理系统的设计与实现

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;采用JSP技术开发 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#x…

Vue3 ref函数和reactive函数

一、ref函数 我们在setup函数中导出的属性和方法虽然能够在模板上展示出来&#xff0c;但是并没有给属性添加响应式&#xff0c;因此&#xff0c;我们需要使用ref函数来为我们的数据提供响应式。 &#xff08;一&#xff09;引入ref函数 import { ref } from "vue"…

【微信小程序】授权登录流程解析

目录 微信授权登录流程 1. 官方图示流程详解 2. 代码登录流程拆解 2.1 前端代码示例讲解 2.2 后端代码示例讲解 2.3 代码登录流程拆解 &#x1f31f; 3. 表情包存储展示&#xff08;扩展&#xff09; 附议 微信授权登录流程 1. 官方图示流程详解 ① 微信服务器验证&a…

数据——最为直接的答案

身处于这样一个数字化快速发展、竞争强烈的时代&#xff0c;不管是企业还是个人&#xff0c;大家都需要及时获取前沿动态信息&#xff0c;密切关注市场的变化。但是&#xff0c;在不计其数的企业中&#xff0c;到底行业top 是哪些企业引领潮流&#xff1f; 只有数据能告诉你最…

Java设计模式-结构型模式-代理模式

代理模式 代理模式静态代理动态代理JDK动态代理CGlib动态代理 代理模式 创建一个代理对象来控制对原始对象的访问&#xff0c;可以用来扩展原始对象的功能&#xff0c;同时保护原始对象 一般使用代理模式的目的有两个&#xff1a; 保护目标对象增强目标对象 代理模式有两种实现…