Code Former安装及使用

Code Former是南洋理工大学和商汤科技联合研究中心联合开发一款AI人脸修复算法,通过该算法,可以对已经模糊的图片进行人脸修复,找回斑驳的记忆
由于网上对于Code Former的封装,全都是要花钱,或者需要其他什么曲折的方式,才能勉强使用到,所以为了能愉快的修复照片,决定自己整理一下开源项目的搭建使用方法,方便更多需要修复照片的小伙伴

1.整体流程介绍

Code Former项目已经在Github开源了,直接访问github项目地址,即可看到Readme文件中,对项目构建、使用的简介。
Code Former整体流程大概可分为

  • 安装Python
  • 安装Git
  • 安装PyTorch
  • clone源码
  • 安装源码所需依赖库
  • 编译源码
  • 安装人脸修复AI模型
  • 使用

下面对这几个具体流程进行详细说明

2.安装Python

Python安装有两个选择

  • 去官网下载Python
  • 下载Anaconda

2.1官网下载Python

直接百度搜索Python官网,进入官网点击下载即可,不过需要注意,不要下载最新版,Code Former要求Python3.8的版本高版本或低版本可能会出现一些依赖问题,建议直接下载Python3.8版本,官网链接。

2.2下载Anaconda(单独安装Python的,可以跳过此步骤)

Anaconda是Python的一个发行版,相比Python,Anaconda多了conda、numpy等的一大堆便于使用的工具包,且可以创建不同版本Python的环境,相对来说更好使用,官网链接。
下面介绍Anaconda安装步骤

2.2.1安装

Anaconda安装,就根据安装程序提示,一直下一步就好了

2.2.2创建python环境

Anaconda安装好后,打开客户端,点击environments,点击底部的create按钮,创建一个环境,环境名称自定义,推荐codeformer,环境的python版本,需要注意一下,要选3.8.x的版本,否则后面安装依赖的时候会报错。
image.png
环境创建完成后,先放旁边,等一会使用。

3.安装Git

Git是一个版本管理工具,用于clone项目源码,直接到git官网下载一个git安装即可,官网链接。
如果没有git,可以直接在github下载源码压缩包,也是可以使用的,具体使用下面会介绍。

4.安装PyTorch

pytorch是一个开源的Python机器学习库,可以用于支持code former进行机器学习,安装方法如下

4.1进入Pytorch官网

访问:https://pytorch.org/ 网站,并点击Get Started
image.png

4.2选择合适的版本类型

START LOCALLY根据自己电脑配置及安装的软件,选择合适信息即可,这里Computer Platform要看自己电脑显卡适不适合,如果电脑显卡是NVIDIA的,且支持CUDA,则选择对应版本的CUDA即可,如果不是NVIDIA显卡,则选择CPU,我的电脑没有显卡,所以我选择CPU
如果不确定自己的显卡支不支持CUDA,可以直接选择CPU,一般修复照片用不了太大的硬件需求,CPU完全够了
image.png
选择完毕之后,将Run this Command的命令行复制一下,到刚刚安装好的Anaconda的codeformer环境中执行一下,等待安装完成即可
image.png

5.下载Code Former源码

上面Pytorch安装完成后,就需要进入github下载源码了。下载源码有两种方式

  • git clone
  • 直接下载zip压缩包(适用于没有安装git的情况)

5.1git clone方式

进入github项目地址,点击Code按钮,点击Local,再选择Https,复制下方的https链接
image.png
然后回到自己电脑,找一个文件夹,用于存放项目源码。在这个文件夹中鼠标右键点击一下,选择Git Bash Here打开git命令行窗口。
image.png
在命令行窗口中输入以下命令并执行,等待项目下载完成即可。

git clone https://github.com/sczhou/CodeFormer.git

5.2直接下载zip压缩包

访问git项目地址,点击Code按钮,再点击Download ZIP,等待源码下载完成即可,下载完成后,将zip压缩包找一个地方解压出来就行。
image.png

6.安装其他相关依赖

以上环境及源码都准备完成后,就需要为项目安装其他相关依赖了,分别为:

  • 安装项目所需依赖库
  • 编译codeformer
  • 下载学习模型

6.1安装项目所需依赖库

在源码文件夹下,打开anaconda的codeformer环境cmd窗口,执行以下命令,安装项目所需依赖库(如果是单独安装了python的话,直接在源码文件夹打开cmd窗口即可)

pip3 install -r requirements.txt

如果命令执行过程中报错,可以打开requirements.txt文件,使用pip3 install 具体依赖库的方式,手动安装所需的依赖库
例如,requirements.txt文件第一行是addict依赖,则执行pip3 install addict即可手动安装好addict依赖库

6.2编译codeformer

上一步执行成功后,再执行以下命令,编译codeformer

python basicsr/setup.py develop

6.3下载学习模型

编译步骤成功后,还需要下载两个模型,才可以使用codeformer的人像修复功能,执行以下三个命令,分别下载几个模型
注意:这三条命令需要一条一条执行,不要一起执行

python scripts/download_pretrained_models.py facelib
python scripts/download_pretrained_models.py dlib
python scripts/download_pretrained_models.py CodeFormer

7.使用

经过以上繁琐流程之后,code former就算正式搭建完成了,下面就可以愉快使用了。不过codeformer自己没有gui交互页面,所以目前只能通过命令行的形式来进行使用,如果对codeformer图形化交互有兴趣的同学,可以自己研究一下。

7.1单独图片人脸修复

执行一下命令,即可对只有一个人脸的图片进行修复

python inserface_codeformer.py -w 0.2 --has_aligned --input_path [image folder]|[image path]

命令说明:

  • -w参数:-w是一个权重参数,取值范围为[0,1],取值越小,则图像修复的质量更高,即人脸修复效果最好,取值越大,则会产生保真度更高的图片,就是人脸修复不那么好,但是图片整体效果会好点(实测,建议将w的参数值写成0,这样人脸修复效果最好,参数值写大了,修复结果反倒并不理想)
  • –input_path参数:这个就是要修复的图片路径了,可以选单独图片路径,也可以选一个有图片的文件夹,它会将文件夹中,所有的图片都进行修复

修复效果大概就像下图这样↓(实测,修复效果真的很棒)
image.png

7.2一张图片多张人脸修复

如果一个照片里面有多个人像,则可以执行以下命令进行修复

python inference_codeformer.py -w 0.7 --input_path [image folder]|[image path]

这个命令中的参数与7.1中的参数含义一致,可以按照自己需求进行设置

以上就是code former从搭建到使用的步骤了,除了修复图片,codeformer还可以修复视频,更多的使用方法,等待小伙伴们自己探索,有问题欢迎私信交流哇。

8.Anaconda和pip下载依赖慢解决方法

8.1Anaconda依赖下载慢解决方法

Anaconda下载依赖的时候,会去连接国外的镜像源,网络不好的话,会导致下载速度极慢,可以将Anaconda镜像源切换到清华大学的镜像源,执行以下三条命令,即可将镜像源换成清华大学的

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/ 
conda config --set show_channel_urls yes

8.2pip下载依赖慢解决方法

pip进行依赖下载的时候,也会遇到速度很慢的问题,可以执行以下命令,将pip镜像源换成清华或者阿里的镜像源
镜像源选择一个使用就行,如果pip在下载过程中报错,提示没有相关依赖的话,可以再切换一下镜像源,比如清华镜像源没有某个依赖,那么就切换到阿里云镜像源,一般这两个镜像源都比较全,如果还没有,建议百度摘一下其他的pip镜像源再做替换尝试下载

# 清华镜像源
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple/
# 阿里云镜像源
pip config set global.index-url https://mirrors.aliyun.com/pypi/simple/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/139263.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【PyTorch教程】如何使用PyTorch分布式并行模块DistributedDataParallel(DDP)进行多卡训练

本期目录 1. 导入核心库2. 初始化分布式进程组3. 包装模型4. 分发输入数据5. 保存模型参数6. 运行分布式训练7. DDP完整训练代码 本章的重点是学习如何使用 PyTorch 中的 Distributed Data Parallel (DDP) 库进行高效的分布式并行训练。以提高模型的训练速度。 1. 导入核心库 D…

23种设计模式 - 模板方法模式

1. 认识模板方法模式 1.1 模式定义 定义一个操作算法中的框架,而将这些步骤延迟加载到子类中。 它的本质就是固定算法框架。 1.2 解决何种问题 让父类控制子类方法的调用顺序 模板方法模式使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤。 1.3…

基于springboot实现福聚苑社区团购平台系统项目【项目源码】计算机毕业设计

基于springboot实现福聚苑社区团购平台系统演示 Javar技术 Java是一种网络脚本语言,广泛运用于web应用开发,可以用来添加网页的格式动态效果,该语言不用进行预编译就直接运行,可以直接嵌入HTML语言中,写成js语言&…

最新有效rtsp/rtmp/hls地址长期维护

✍️作者简介:沫小北/码农小北(专注于Android、Web、TCP/IP等技术方向) 🐳博客主页:沫小北/码农小北 开源中国、稀土掘金、51cto博客、博客园、知乎、简书、慕课网、CSDN 🔔如果文章对您有一定的帮助请&…

Load-balanced-online-OJ-system 负载均衡的OJ系统项目

前言 那么这里博主先安利一些干货满满的专栏了! 首先是博主的高质量博客的汇总,这个专栏里面的博客,都是博主最最用心写的一部分,干货满满,希望对大家有帮助。 高质量博客汇总 本项目Github地址 - Load-balanced-o…

Go,14周年[译]

国内的双十一购物狂欢已没有了当年的那种热闹与喧嚣,但大洋彼岸的Go团队却始终保持稳中有增的开发和语言演进节奏。今晨Go核心团队的Russ Cox[1]代表Go语言项目团队在Go官博上发表了《Fourteen Years of Go》[2]的博文,纪念Go语言开源14周年[3]&#xff…

证明串口是好的

前提:客户返回来一个pad,说串口不好用,售后让研发确定一下串口好不好用。 pad的串口是usb口(不知道这样说对不对),然后就一个“usb--9针”的线。 要确定串口好不好,首先要从电脑发数据给pad&a…

牛客网上收藏题目总结及重写(C语言)(3)

每日一言 如果预计中的不幸没有发生的话&#xff0c;我们就会收获意外的喜悦。 --人生的智慧 题目BC84 错因&#xff1a;忘记要使用小数除法 代码 #include <stdio.h> int main() {int i 0;int n 0;scanf("%d",&n);double sum 0;for(i1;i<n;i){su…

如何用自然语言 5 分钟构建个人知识库应用?我的 GPTs builder 尝试

开发者的想象力闸门一旦打开&#xff0c;迎接我们的必然是目不暇接的 AI 应用浪潮冲击。 兴奋 早晨&#xff0c;我突然发现 ChatGPT 最新的 Create GPTs 功能可以用了。 这太让我意外了&#xff0c;没想到这么快。根据页面上的提示&#xff0c;我一直以为还得等上一周左右。于是…

跨境电商商城源码:实现多语言、多货币、多商户入驻的全面解决方案

随着全球电子商务的迅猛发展&#xff0c;越来越多的商家和消费者选择在跨境电商平台上进行交易。为了满足不同国家和地区的需求&#xff0c;多语言、多货币、多商户入驻已成为跨境电商平台的核心竞争力。本文将为您介绍如何通过跨境电商商城源码实现这些功能&#xff0c;帮助您…

qt系统自带的对话框

QMessageBox是静态成员函数可以直接通过类名进行访问 参数四是两个按钮的类型 第五个参数是回车默认选择的按键&#xff0c;该函数返回值是案件类型 其他标准对话框

react脚手架create-react-app创建react项目

1.全局安装 create-react-app winR/桌面目录下cmd进入终端页面 npm i -g create-react-app2.create-react app 初始化项目 create-react-app 项目名称项目初始化完成 运行项目 目录下cmd控制台输入 npm start然后打开本地服务运行项目查看

学会这10个Fluent仿真优化技巧,效率蹭蹭蹭

ANSYS Fluent 是计算流体动力学 (CFD) 仿真的强大工具&#xff0c;使工程师和科学家能够分析和预测各种应用中的流体行为。然而&#xff0c;运行模拟可能需要大量计算&#xff0c;因此优化设置对于在最短的时间内获得最准确的结果非常重要。 Fluent对电脑配置要求高&#xff1f…

服务号怎么升级订阅号

服务号和订阅号有什么区别&#xff1f;服务号转为订阅号有哪些作用&#xff1f;首先我们要看一下服务号和订阅号的主要区别。1、服务号推送的消息没有折叠&#xff0c;消息出现在聊天列表中&#xff0c;会像收到消息一样有提醒。而订阅号推送的消息是折叠的&#xff0c;“订阅号…

世微 升压恒压IC dc-dc转换器 充电器手持设备便携式产品 AP8660

AP8660是一款升压dc-dc转换器&#xff0c;内置MOS调节器&#xff0c;内部补偿&#xff0c;还可以最小6个外部组件&#xff0c;内部的软识启动功能可以降压涌入电流 AP8660 SOT23-6封装&#xff0c;可以为PCB提供节省空间 特点 可调输出&#xff0c;最高达到24W 内部固定PWM频…

CCF ChinaSoft 2023 论坛巡礼 | 生成式AI与软件自动化论坛

2023年CCF中国软件大会&#xff08;CCF ChinaSoft 2023&#xff09;由CCF主办&#xff0c;CCF系统软件专委会、形式化方法专委会、软件工程专委会以及复旦大学联合承办&#xff0c;将于2023年12月1-3日在上海国际会议中心举行。 本次大会主题是“智能化软件创新推动数字经济与社…

css实现鼠标悬停时元素的显示与隐藏

css实现鼠标悬停时元素的显示与隐藏 跟着B站黑马学习小兔鲜项目&#xff0c;有个点记录一下 就是当鼠标悬浮在商品列表上时&#xff0c;列表中的商品会显示出来&#xff0c;离开时&#xff0c;商品隐藏&#xff0c;如下&#xff1a; 感觉这个功能经常会遇到&#xff0c;但一直…

MATLAB中ginput函数用法

目录 语法 说明 示例 标识点和绘制坐标 返回用于选择坐标的按键 标识地理坐标区上的点 ginput函数的功能是标识坐标区坐标。 语法 [x,y] ginput(n) [x,y] ginput [x,y,button] ginput(___) 说明 [x,y] ginput(n) 可用于标识笛卡尔坐标区、极坐标区或地理坐标区内…

docker简易入门(极简,纯干货)

简介 Docker是一种容器化平台&#xff0c;它可以用来轻松地创建、部署和运行应用程序和服务。Docker使用容器技术来管理应用程序的运行环境&#xff0c;它将应用程序和服务打包到一个易于移植的容器中&#xff0c;然后在任何地方运行这个容器&#xff0c;无需担心不同环境之间…