门禁系统中人脸检测技术的原理剖析和使用教程

引言

人脸检测 API 是一种基于深度学习技术的图像处理API,可以快速地检测出一张图片中的人脸,并返回人脸的位置和关键点坐标,在人脸识别系统、人脸情绪识别等多种场景下都有极大的应用。

本文将从人脸检测的发展历程、原理、特点等角度出发,一文带你看透人脸检测 API 。

人脸检测技术的发展历程

人脸检测技术经历了多个阶段的发展

基于深度学习的人脸检测原理和算法

基于深度学习的人脸检测算法通常采用卷积神经网络(Convolutional Neural Network,CNN)进行训练和检测。CNN 由多个卷积层和池化层组成,可以自动从图像中提取特征,实现对图像的分类和定位。

基于深度学习的人脸检测算法的两个阶段

基于深度学习的人脸检测算法通常分为两个阶段:候选框生成候选框筛选

  1. 候选框生成

候选框生成是指在一张图像中,通过滑动窗口的方式生成一系列可能包含人脸的矩形框。这些候选框通常是不同尺度和不同长宽比的,可以通过缩放和变形实现。

  1. 候选框筛选

候选框筛选是指在生成的候选框中,通过卷积神经网络进行分类和定位,筛选出最终的人脸框。分类阶段通常采用二分类模型(人脸和非人脸),定位阶段则采用回归模型对人脸框进行精细调整。

常见的基于深度学习的人脸检测算法

  • R-CNN:通过选择性搜索算法生成候选框,并使用卷积神经网络进行分类和定位。
  • Faster R-CNN:采用候选区域网络(Region Proposal Network,RPN)代替选择性搜索,大大提高了检测速度和准确率。
  • SSD:采用多尺度特征图进行候选框生成,同时进行分类和定位。
  • YOLO:将人脸检测问题转化为目标检测问题,通过一个神经网络同时进行候选框生成、分类和定位,实现了实时检测。

人脸检测的性能指标和评价方法

人脸检测的性能指标和评价方法可以用来评估算法的准确率和效率。常见的性能指标和评价方法包括:

  1. 准确率指标:
  • 精度(Precision):检测为人脸的框中真正为人脸的比例。
  • 召回率(Recall):所有人脸中被检测出的比例。
  • F1值:综合考虑精度和召回率的指标。
  1. 效率指标:
  • 检测速度:检测一张图片所需的时间。
  • 模型大小:模型的参数量和内存占用量。
  1. 评价方法:
  • ROC曲线:根据不同的阈值绘制真正例率(True Positive Rate)和假正例率(False Positive Rate)的曲线。
  • PR曲线:根据不同的阈值绘制精度和召回率的曲线。
  • 平均精度(Average Precision,AP):综合考虑精度和召回率的指标,通过计算PR曲线下面积得到。

人脸检测 API 的应用案例

  1. 人脸识别系统

人脸识别系统是人脸检测技术的重要应用之一。通过人脸检测 API 可以快速准确地检测图像中的人脸,并提取人脸特征,进行人脸比对和识别。人脸识别系统广泛应用于安全门禁、考勤打卡、社交网络等领域。

例如,某些公共场所和机构通过人脸识别系统实现门禁控制,对进出人员进行身份认证,确保安全和管理。同时,人脸识别系统还可以应用于商业和广告领域,通过识别客户面部表情和情绪,实现个性化推荐和服务。

  1. 人脸情绪识别

人脸情绪识别是指通过人脸检测和分析技术,识别图像中人脸的情绪状态,如高兴、悲伤、惊讶、厌恶等。人脸情绪识别技术可应用于广告营销、教育教学、健康医疗等领域。

例如,某些公司利用人脸情绪识别技术分析客户的情绪和兴趣,实现更精准的广告投放和销售策略;教育领域可以利用人脸情绪识别技术分析学生的学习情况和表现,为学生提供更好的教育服务和支持。

  1. 人脸活体检测

人脸活体检测是指通过人脸检测和分析技术,判断图像中的人脸是否是真实的、活动的,避免遭受人脸欺诈和攻击。人脸活体检测技术广泛应用于金融、安全、政务等领域。

例如,某些银行和金融机构采用人脸活体检测技术,确保用户身份真实、防止诈骗和欺诈;政务领域可以利用人脸活体检测技术,确保政务数据的真实性和安全性。

  1. 其他应用案例

除了上述应用案例外,人脸检测 API 还可以应用于许多其他领域,如医疗健康、交通出行、娱乐等。

例如,医疗健康领域可以利用人脸检测技。

如何使用人脸检测 API

  • 注册和获取 API 密钥

注册登录 APISpace 之后,在 人脸检测 API 详情页 可以看到【免费试用】的按钮,点击即可获得相应的免费次数。

注册成功后,我们在页面导航菜单点击 【我的 API】进入 【访问控制】页面,即可看到平台提供的密钥。

一般来说注册成功后,都有一定的免费试用,试用过了我们可以在平台上购买更多的次数。

  • 调用 API 进行人脸检测

获取API 密钥后,我们可以参考 API 供应商提供的文档或示例代码,在代码中集成人脸检测功能。

在APISpace 网站上,我们可以在 人脸检测 详情页上,获取它的示例代码。

以 Java 为例的示例代码如下:

OkHttpClient client = new OkHttpClient().newBuilder().build();
MediaType mediaType = MediaType.parse("application/json");
RequestBody body = RequestBody.create(mediaType, "{"image":"","url":"https://bkimg.cdn.bcebos.com/pic/7dd98d1001e93901213f19c3b9a443e736d12e2e38bf?x-bce-process=image/watermark,image_d2F0ZXIvYmFpa2U5Mg==,g_7,xp_5,yp_5"}");
Request request = new Request.Builder()
  .url("https://eolink.o.apispace.com/face/detect")
  .method("POST",body)
  .addHeader("X-APISpace-Token","")
  .addHeader("Authorization-Type","apikey")
  .addHeader("Content-Type","")
  .build();

Response response = client.newCall(request).execute();
System.out.println(response.body().string());
  • 调用 API 进行人脸检测

我们在人脸检测的测试页面上,输入测试的图片地址,就可以看到返回的相关检测信息。

  • 解析 API 返回的结果
{
    "result": [{
        "location": [
            [115, 100],
            [438, 100],
            [438, 589],
            [115, 589]
        ],
        "class": "face",
        "confidence": "0.41",
        "keypoints": [{
            "x": "209.49",
            "y": "298.70",
            "confidence": "0.99"
        }, {
            "x": "352.25",
            "y": "296.17",
            "confidence": "0.99"
        }, {
            "x": "284.94",
            "y": "397.99",
            "confidence": "0.99"
        }, {
            "x": "224.36",
            "y": "457.44",
            "confidence": "0.99"
        }, {
            "x": "342.44",
            "y": "454.92",
            "confidence": "0.99"
        }]
    }],
    "count": 1,
    "log_id": "942de183-dff0-11ed-bf0d-00000001610f"
}

返回结果字段说明如下:

结语

人脸检测 API 是目前人工智能技术在计算机视觉领域中应用的一个重要方向,它具有广泛的应用前景和深远的社会影响。在未来的发展中,人脸检测 API 的发展趋势主要体现在以下几个方面:

  1. 更高的精度和速度:随着人脸检测算法和硬件技术的发展,人脸检测 API 的精度和速度将不断提高,使其在更多的场景下得到应用。
  2. 结合其他技术进行深度融合:将人脸检测技术与人脸识别、人脸情绪识别、人脸活体检测等其他相关技术进行深度融合,可以进一步提高整个系统的性能和应用效果。
  3. 智能化和自适应:通过引入机器学习和深度学习等技术,可以使人脸检测 API 实现更高级的智能化和自适应能力,以更好地适应各种场景和复杂环境。

人脸检测技术已经广泛应用于人脸识别、安防监控、娱乐等领域。随着人脸检测 API 技术的不断发展,它将在更多的领域中得到应用,如社交网络、金融支付、智能家居等领域,带来更加便利和安全的生活体验。同时,人脸检测技术也带来一些社会影响和隐患,需要加强法律法规和伦理规范的制定和执行,以保障人们的隐私和安全。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/13821.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

学习笔记:《Foundation models for generalist medical artificial intelligence》

目录 一、GMAI模型的概念与优势 二、GMAI模型面临的挑战 1.验证 2.社会偏见 3.隐私 4.规模 5.技术挑战 三、结论: 参考文献 最近在《Nature》杂志上发表的一篇名为《Foundation models for generalist medical artificial intelligence》的文章&#xff0c…

Flutter 布局探索 | 如何分析尺寸和约束

theme: cyanosis 前言 本文来分享一下,通过查看源码和布局信息解决的一个实际中的布局小问题,也希望通过本文的分享,当你遇到布局问题时,可以靠自己的脑子和双手解决问题。 如下所示,将 TextField 作为 AppBar 组件的 …

拆解Open ODS View和HANA Composite Provider

这两个也不是新面孔了。 那么OODS和HCPR到底他俩怎么用?既然大家都是虚拟的,不占地方。那这俩infoprovider到底有啥区别? 首先就是目的不同。 HCPR是可以用Union和Join。也就是老的Multiprovider和InfoSet。Union就是说两个数据集的行能被…

【OS实验】【学习笔记】

文章目录 零、实验参考实验1 熟悉实验环境实验2 操作系统的引导实验3 系统调用实验4 进程运行轨迹的跟踪与统计实验5 基于内核栈切换的进程切换实验6 信号量的实现和应用实验7 地址映射与共享实验8 终端设备的控制实验9 proc文件系统的实现Reference 零、实验参考 &#x1f52…

【华为机考】专题突破 第一周:单调栈 739 、503 、901、84

刷题顺序参考于 《2023华为机考刷题指南:八周机考速通车》 前言 单调栈:分为单调递增和单调递减栈。(栈内元素成递增或者递减性): 单调递增栈:从栈底到栈顶数据是从大到小,即 栈内的元素从栈顶 到栈底 是递增的&#x…

【手把手刷CCF】202303-2-垦田计划100分(超简单思路,含详细解释注释与代码)

文章目录: 故事的开头总是极尽温柔,故事会一直温柔……💜一、🌳代码如下:二、🌵解题思路❤️❤️❤️忙碌的敲代码也不要忘了浪漫鸭! 故事的开头总是极尽温柔,故事会一直温柔……&am…

SpringBoot集成WebSocket实现及时通讯聊天功能!!!

1&#xff1a;在SpringBoot的pom.xml文件里添加依赖: <!-- websocket --> <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-websocket</artifactId> </dependency> 2&#xff1a;在配置中…

java 拼接字符串的方法

1.拼接字符串的方法&#xff0c;先要将字符串转化为数字类型&#xff0c;再根据需要拼接。这样可以避免直接拼接导致的错误。 2.将字符串转化为数字类型&#xff0c;这个就是一个循环。可以使用循环的方法&#xff0c;但是循环次数不宜太多&#xff0c;否则容易出错。 3.可以使…

ERTEC200P-2 PROFINET设备完全开发手册(7-1)

7. 配置模块及自定义模块 7.1.1 PN设备的基本模型 初次接触PN的开发者&#xff0c;最容易出现的错误就是设备的实际配置与TIA的组态不一致。为了开发的过程更加顺利&#xff0c;非常有必要掌握PN设备的基础模型。PN设备的基本模型如下图描述&#xff1a; PN设备的基本构成是插…

论文的总体结构及质量控制

要写出一篇高质量AI领域的论文&#xff0c;首先要搞清楚论文由哪几部分组成&#xff0c;即论文的总体结构。同时&#xff0c;还要了解AI论文的质量评价与质量控制的指标。这样做的目的是为了弄明白AI论文的结构以及什么样的AI论文才是好的论文。 通常一篇AI论文的总体结构主…

ZVL3网络分析仪

ZVL3 Rohde&Schwarz ZVL3 3G矢量网络分析仪|罗德与施瓦茨 9KHz至3GHz 罗德与施瓦茨Rohde&Schwarz 性能特点&#xff1a; 频率范围 9kHz至3GHz/6 GHz(典型值为5kHz) 测量时间(201个测量点&#xff0c;以校准的双端口) <75ms 数据传输(201个测量点) 在100Mbit/sLAN…

DFS与BFS|树与图的遍历:拓扑排序

深度优先搜索DFS DFS每次往最深处搜&#xff0c;搜到叶子节点就返回&#xff0c;然后继续搜&#xff0c;特点&#xff1a;走到头才返回&#xff0c;返回并不是返回最开始&#xff0c;而是每次返回上一层之后&#xff0c;再看这一层能不能往下搜 DFS有回溯和剪枝。返回上一层的过…

OpenCV实例(七)汽车检测

OpenCV实例&#xff08;七&#xff09;汽车检测 1.概述2.代码实例3.代码功能 作者&#xff1a;Xiou 1.概述 对于图像和视频检测中的目标类型并没有具体限制&#xff0c;但是&#xff0c;为了使结果的准确度在可接受范围内&#xff0c;需要一个足够大的数据集&#xff0c;包括…

《Spring MVC》 第四章 域对象、视图、转发和重定向

前言 介绍Spring MVC的域对象、视图、转发和重定向 1、域对象共享数据 Spring MVC 提供了多种域对象共享数据的方式&#xff0c;其中最常用的方式如下&#xff1a; 1.1、使用 Servlet API 向 request 域对象中共享数据 服务端代码&#xff1a; RequestMapping("toLo…

为什么企业都需要搭建搭建一个内部知识库?

企业内部知识管理是指企业通过各种手段收集、整理、管理和传播企业内部的知识&#xff0c;以提高企业的竞争力和创新能力。在实践中&#xff0c;企业内部知识管理往往需要建立一个内部知识库&#xff0c;以更好地实现知识的共享和管理。本文将从以下几个方面探讨为什么企业内部…

【SWAT水文模型】ArcSWAT输入准备

ArcSWAT输入准备 1 必需的ArcSWAT空间数据集1.1 数字高程模型&#xff08;DEM&#xff09;1.2 土地覆盖/土地利用类型1.3 土壤数据 2 可选的ArcSWAT空间数据集2.1 DEM Mask2.2 Streams2.3 User- Defined Watersheds 3 ArcSWAT表格和文本文件3.1 子流域出口位置表(dBase 表)3.2 …

掏空腰包,日子难过,机缘转岗软件测试,这100个日夜的心酸只有自己知道...

我今年27岁&#xff0c;原本从事着土木工程相关的工作&#xff0c;19年开始有了转行的想法... 大学刚毕业那年&#xff0c;我由于学的是土木工程专业&#xff0c;自然而然的从事了和土木工程相关的工作&#xff0c;房贷、车贷&#xff0c;在经济的高压下&#xff0c;当代社会许…

Idea 配置 maven 离线使用

首先&#xff0c;项目中的依赖已经下载到本地仓库&#xff0c;在没有网络或者没办法连通公司的maven仓库时&#xff0c;需要配置离线使用。 1. 配置 setting.xml 在 maven 使用的 setting.xml 文件中&#xff0c;加入以下配置。 默认在 maven安装目录下的 conf 文件夹下 。 &…

没看错!一行python代码就可以帮您获取图片中的文字信息

最近工作中有需求需要用python对图片中的文字进行识别&#xff0c;调研了一下&#xff0c;选择了tesseract&#xff0c; 目前在github上有50.5k个star&#xff01;python可以调用&#xff0c;安装也十分方便&#xff0c;pip install pytesseract 即可。如果没有Pillow 包&…