eocc1_Findings_candlestick_ohlc_volume_

An Unusually Tall Candle Often Has a Minor High or Minor Low Occurring within One Day of It异常高的蜡烛通常会在一天内出现小幅高点或小幅低点

     I looked at tens of thousands of candles to prove this, and the study details are on my web site, ThePatternSite.com.

     Figure 1.1 shows examples of unusually tall candles highlighted by up arrows. A minor high or low occurs within a day of each of them (before or after) except for A and B 除了 A 和 B 之外,每个信号的一天内(之前或之后)都会出现小幅高点或低点. Out of 11 signals in this figure, the method got 9 of them right, a success rate of 82% (which is unusually good).

import yfinance as yf

stock_symbol='MLKN'
df = yf.download( stock_symbol, start='2006-12-15', end='2007-04-01')
df

 

from matplotlib.dates import date2num
import pandas as pd

df.reset_index(inplace=True)
df['Datetime'] = date2num( pd.to_datetime( df["Date"], # pd.Series: Name: Date, Length: 750, dtype: object
                                           format="%Y-%m-%d"
                                         ).tolist()
                                # [Timestamp('2017-01-03 00:00:00'),...,Timestamp('2017-06-30 00:00:00')]
                         )# Convert datetime objects to Matplotlib dates.

df.head()

df_candlestick_data = df.loc[:, ["Datetime",
                                 "Open",
                                 "High",
                                 "Low",
                                 "Close",
                                 "Volume"
                                ]
                            ]

df_candlestick_data

!pip install mpl-finance

https://github.com/matplotlib/mplfinance/blob/master/src/mplfinance/plotting.py 

from mpl_finance import candlestick_ohlc
from matplotlib.dates import date2num, WeekdayLocator, DayLocator, DateFormatter, MONDAY
import matplotlib.pyplot as plt
import numpy as np
import datetime
from matplotlib.dates import num2date

# Create a new Matplotlib figure
fig, ax = plt.subplots( figsize=(10,6) )

xdays=[]
# convert the (number of datetime) to a (date string)
for index in df_candlestick_data.index.values: # [13497.0, 13500., ...,13500.][index]
    xdays.append( datetime.date.isoformat(num2date( df_candlestick_data['Datetime'][index]
                                                  )# datetime.datetime(2006, 12, 15, 0, 0, tzinfo=datetime.timezone.utc)
                                         )
                ) # ['2006-12-15', '2006-12-18', ...,'2007-03-30']

# creation of new data by replacing the time array with equally spaced values.
# this will allow to remove the gap between the days, when plotting the data
data2 = np.hstack([ df_candlestick_data.index.values[:, np.newaxis], df_candlestick_data.values[:,1:]
                    #[[0], ...], [[35.77999878, 35.95999908, 35.36000061, 35.40000153], ...]
                  ])#[[1], ...], [[35.40999985, 35.63000107, 34.43000031, 34.49000168], ...]
# array([[ 0.        , 35.77999878, 35.95999908, 35.36000061, 35.40000153],
#        [ 1.        , 35.40999985, 35.63000107, 34.43000031, 34.49000168],
#        ...
#        [70.        , 33.50999832, 33.88999939, 33.25      , 33.49000168]
#        ])

# Prepare a candlestick plot
# 1
# candlestick_ohlc(ax, quotes, width=0.2, colorup='k', colordown='r', alpha=1.0)
# quotes : sequence of (time, open, high, low, close, ...) sequences
#          As long as the first 5 elements are these values,
# time : we use an (integer index list) to replace the (Datetime list) #########
ls, rs=candlestick_ohlc( ax, data2, # data
                         width=0.6,# fraction of a day for the rectangle width
                         colorup='yellow', colordown='r',
                         alpha=1.
                       )
# returns (lines, patches) where
#        lines is a list of lines added and
#        patches is a list of the rectangle patches added

# https://matplotlib.org/stable/api/_as_gen/matplotlib.lines.Line2D.html
for line in ls:
  line.set_c('k')
  line.set_linewidth(1.)
  line.set_zorder(5)

for r in rs:
    r.set_edgecolor('k')
    r.set_linewidth(1)
    #r.set_zorder(1)
    r.set_alpha(1)
    #r.set_facecolor('w')

# 2
# set the ticks of the x axis with an (integer index list)
ax.set_xticks( np.arange( len(df_candlestick_data) ) )
# 3
# set the xticklabels with a (date string) list
ax.set_xticklabels(xdays, rotation=45, horizontalalignment='right')

# Set Date Format
# ax.xaxis.set_major_formatter( DateFormatter('%Y-%m-%d') )
# ax.xaxis.set_minor_locator( DayLocator() ) # minor ticks on the days
ax.xaxis.set_major_locator( WeekdayLocator(MONDAY) ) # major ticks on the mondays
ax.xaxis_date() # treat the x data as dates

#justify
ax.autoscale(enable=True, axis='x', tight=True)
# rotate all ticks to 45
plt.setp( ax.get_xticklabels(), rotation=45, horizontalalignment='right' )

plt.tight_layout()# Prevent x axes label from being cropped
plt.show()


 

 2 two subplots with volume

from mpl_finance import candlestick_ohlc
from matplotlib.dates import date2num, WeekdayLocator, DayLocator, DateFormatter, MONDAY
import matplotlib.pyplot as plt
import numpy as np
import datetime
from matplotlib.dates import num2date
import numpy as np

# Create a new Matplotlib figure
fig, axes = plt.subplots( 2, 1, figsize=(10,6), 
                          sharex=True,
                          gridspec_kw={'height_ratios': [3,1]},
                          )
fig.subplots_adjust(hspace=0.)

xdays=[]
# convert the (number of datetime) to a (date string)
for index in df_candlestick_data.index.values: # [13497.0, 13500., ...,13500.][index]
    xdays.append( datetime.date.isoformat(num2date( df_candlestick_data['Datetime'][index]
                                                  )# datetime.datetime(2006, 12, 15, 0, 0, tzinfo=datetime.timezone.utc)
                                         )
                ) # ['2006-12-15', '2006-12-18', ...,'2007-03-30']

# creation of new data by replacing the time array with equally spaced values.
# this will allow to remove the gap between the days, when plotting the data
data2 = np.hstack([ df_candlestick_data.index.values[:, np.newaxis], df_candlestick_data.values[:,1:]
                    #[[0], ...], [[35.77999878, 35.95999908, 35.36000061, 35.40000153], ...]
                  ])#[[1], ...], [[35.40999985, 35.63000107, 34.43000031, 34.49000168], ...]
# array([[ 0.        , 35.77999878, 35.95999908, 35.36000061, 35.40000153],
#        [ 1.        , 35.40999985, 35.63000107, 34.43000031, 34.49000168],
#        ...
#        [70.        , 33.50999832, 33.88999939, 33.25      , 33.49000168]
#        ])

# Prepare a candlestick plot
# 1
# candlestick_ohlc(ax, quotes, width=0.2, colorup='k', colordown='r', alpha=1.0)
# quotes : sequence of (time, open, high, low, close, ...) sequences
#          As long as the first 5 elements are these values,
# time : we use an (integer index list) to replace the (Datetime list) #########
ls, rs=candlestick_ohlc( axes[0], data2, # data
                         width=0.6,# fraction of a day for the rectangle width
                         colorup='yellow', colordown='r',
                         alpha=1.
                       )
# returns (lines, patches) where
#        lines is a list of lines added and
#        patches is a list of the rectangle patches added

# https://matplotlib.org/stable/api/_as_gen/matplotlib.lines.Line2D.html
for line in ls:
  line.set_c('k')
  line.set_linewidth(1.)
  line.set_zorder(5)

for r in rs:
    r.set_edgecolor('k')
    r.set_linewidth(1)
    #r.set_zorder(1)
    r.set_alpha(1)
    #r.set_facecolor('w')

#axes[0].set_xticks([]) # remove xticks
axes[0].spines['bottom'].set_visible=False

# Create a new column in dataframe and populate with bar color
i = 0
while i < len(df):
    if df_candlestick_data.iloc[i]['Close'] > df_candlestick_data.iloc[i]['Open']:
        df_candlestick_data.at[i, 'color'] = "yellow"
    elif df_candlestick_data.iloc[i]['Close'] < df_candlestick_data.iloc[i]['Open']:
        df_candlestick_data.at[i, 'color'] = "red"
    else:
        df_candlestick_data.at[i, 'color'] = "black"
    i += 1
# 2
# set the ticks of the x axis with an (integer index list)
# axes[1].set_xticks( np.arange( len(df_candlestick_data) ) )    
axes[1].bar( np.arange( len(df_candlestick_data) ), 
             df_candlestick_data['Volume'].values,
             color=df_candlestick_data['color'].values,
             edgecolor=['black']*len(df_candlestick_data),
             width=0.6,
            )

# 3
# set the xticklabels with a (date string) list
axes[1].set_xticklabels(xdays, rotation=45, horizontalalignment='right')

# Set Date Format
# ax.xaxis.set_major_formatter( DateFormatter('%Y-%m-%d') )
# ax.xaxis.set_minor_locator( DayLocator() ) # minor ticks on the days
axes[1].xaxis.set_major_locator( WeekdayLocator(MONDAY) ) # major ticks on the mondays
axes[1].xaxis_date() # treat the x data as dates

#justify
axes[1].autoscale(enable=True, axis='x', tight=True)
# rotate all ticks to 45
plt.setp( axes[1].get_xticklabels(), rotation=45, horizontalalignment='right' )


#axes[1].set_yticks([]) # remove yticks
axes[1].spines['top'].set_visible=False
#axes[0].set_xticks([]) # remove xticks


plt.tight_layout()# Prevent x axes label from being cropped
plt.show()


1 one subplot with volume

from mpl_finance import candlestick_ohlc
from matplotlib.dates import date2num, WeekdayLocator, DayLocator, DateFormatter, MONDAY
import matplotlib.pyplot as plt
import numpy as np
import datetime
from matplotlib.dates import num2date
import numpy as np

# Create a new Matplotlib figure
fig, ax = plt.subplots( figsize=(10,6) )

xdays=[]
# convert the (number of datetime) to a (date string)
for index in df_candlestick_data.index.values: # [13497.0, 13500., ...,13500.][index]
    xdays.append( datetime.date.isoformat(num2date( df_candlestick_data['Datetime'][index]
                                                  )# datetime.datetime(2006, 12, 15, 0, 0, tzinfo=datetime.timezone.utc)
                                         )
                ) # ['2006-12-15', '2006-12-18', ...,'2007-03-30']

# creation of new data by replacing the time array with equally spaced values.
# this will allow to remove the gap between the days, when plotting the data
data2 = np.hstack([ df_candlestick_data.index.values[:, np.newaxis], df_candlestick_data.values[:,1:]
                    #[[0], ...], [[35.77999878, 35.95999908, 35.36000061, 35.40000153], ...]
                  ])#[[1], ...], [[35.40999985, 35.63000107, 34.43000031, 34.49000168], ...]
# array([[ 0.        , 35.77999878, 35.95999908, 35.36000061, 35.40000153],
#        [ 1.        , 35.40999985, 35.63000107, 34.43000031, 34.49000168],
#        ...
#        [70.        , 33.50999832, 33.88999939, 33.25      , 33.49000168]
#        ])

# Prepare a candlestick plot
# 1
# candlestick_ohlc(ax, quotes, width=0.2, colorup='k', colordown='r', alpha=1.0)
# quotes : sequence of (time, open, high, low, close, ...) sequences
#          As long as the first 5 elements are these values,
# time : we use an (integer index list) to replace the (Datetime list) #########
ls, rs=candlestick_ohlc( ax, data2, # data
                         width=0.6,# fraction of a day for the rectangle width
                         colorup='yellow', colordown='r',
                         alpha=1.
                       )
# returns (lines, patches) where
#        lines is a list of lines added and
#        patches is a list of the rectangle patches added

# https://matplotlib.org/stable/api/_as_gen/matplotlib.lines.Line2D.html
for line in ls:
  line.set_c('k')
  line.set_linewidth(1.)
  line.set_zorder(5)

for r in rs:
    r.set_edgecolor('k')
    r.set_linewidth(1)
    #r.set_zorder(1)
    r.set_alpha(1)
    #r.set_facecolor('w')

# 2
# set the ticks of the x axis with an (integer index list)
ax.set_xticks( np.arange( len(df_candlestick_data) ) )
# 3
# set the xticklabels with a (date string) list
ax.set_xticklabels(xdays, rotation=45, horizontalalignment='right')

# Set Date Format
# ax.xaxis.set_major_formatter( DateFormatter('%Y-%m-%d') )
# ax.xaxis.set_minor_locator( DayLocator() ) # minor ticks on the days
ax.xaxis.set_major_locator( WeekdayLocator(MONDAY) ) # major ticks on the mondays
ax.xaxis_date() # treat the x data as dates

#justify
ax.autoscale(enable=True, axis='x', tight=True)
# rotate all ticks to 45
plt.setp( ax.get_xticklabels(), rotation=45, horizontalalignment='right' )

ax2 = ax.twinx()  

ax2.bar( np.arange( len(df_candlestick_data) ), 
        df_candlestick_data['Volume'].values,
        color=df_candlestick_data['color'].values,
        edgecolor=['black']*len(df_candlestick_data),
        width=0.6
      )

max_price=np.max(df_candlestick_data[['Open','Close', 'High', 'Low']].values )#40.79
min_price=np.min(df_candlestick_data[['Open','Close', 'High', 'Low']].values )#32.85

min_price_tick = np.floor(min_price) # 32.0
max_price_tick = np.ceil(max_price)  # 41.0
num_y_ticks=10

#spacing=(max_price_tick-min_price_tick)/5
spacing=(max_price_tick-min_price_tick)/num_y_ticks # 0.9
min_price_tick= np.floor(min_price_tick-spacing) # 31.0

min_volume=df_candlestick_data['Volume'].min() # 222 400
max_volume=df_candlestick_data['Volume'].max() # 3 638 400

min_floor_volume=np.floor( np.log10( min_volume + 1e-10 ) )#5.0 : 222 400 ==> 5.34713478291002 ==> 5
max_ceil_volume=np.ceil( np.log10( max_volume + 1e-10 ) ) # 7.0 : 3 638 400 ==> 6.560910443007641 ==> 6

#min_volume_base = np.floor( min_volume/( 10**(min_floor_volume) ) ) # 5
min_volume_tick = 1*10**min_floor_volume # 100 000#min_volume_base * 

#max_volume_base= np.ceil( max_volume/( 10**(max_ceil_volume-1) ) ) # 6
max_volume_tick = 3.0 * 10**(max_ceil_volume) # 30 000 000
ax.set_ylim(min_price_tick, max_price_tick )
ax2.set_ylim(min_volume_tick, max_volume_tick )

plt.tight_layout()# Prevent x axes label from being cropped
plt.show()

from mpl_finance import candlestick_ohlc
from matplotlib.dates import date2num, WeekdayLocator, DayLocator, DateFormatter, MONDAY
import matplotlib.pyplot as plt
import numpy as np
import datetime
from matplotlib.dates import num2date
import numpy as np

# Create a new Matplotlib figure
fig, ax = plt.subplots( figsize=(10,6) )

xdays=[]
# convert the (number of datetime) to a (date string)
for index in df_candlestick_data.index.values: # [13497.0, 13500., ...,13500.][index]
    xdays.append( datetime.date.isoformat(num2date( df_candlestick_data['Datetime'][index]
                                                  )# datetime.datetime(2006, 12, 15, 0, 0, tzinfo=datetime.timezone.utc)
                                         )
                ) # ['2006-12-15', '2006-12-18', ...,'2007-03-30']

# creation of new data by replacing the time array with equally spaced values.
# this will allow to remove the gap between the days, when plotting the data
data2 = np.hstack([ df_candlestick_data.index.values[:, np.newaxis], df_candlestick_data.values[:,1:]
                    #[[0], ...], [[35.77999878, 35.95999908, 35.36000061, 35.40000153], ...]
                  ])#[[1], ...], [[35.40999985, 35.63000107, 34.43000031, 34.49000168], ...]
# array([[ 0.        , 35.77999878, 35.95999908, 35.36000061, 35.40000153],
#        [ 1.        , 35.40999985, 35.63000107, 34.43000031, 34.49000168],
#        ...
#        [70.        , 33.50999832, 33.88999939, 33.25      , 33.49000168]
#        ])

# Prepare a candlestick plot
# 1
# candlestick_ohlc(ax, quotes, width=0.2, colorup='k', colordown='r', alpha=1.0)
# quotes : sequence of (time, open, high, low, close, ...) sequences
#          As long as the first 5 elements are these values,
# time : we use an (integer index list) to replace the (Datetime list) #########
ls, rs=candlestick_ohlc( ax, data2, # data
                         width=0.6,# fraction of a day for the rectangle width
                         colorup='yellow', colordown='r',
                         alpha=1.
                       )
# returns (lines, patches) where
#        lines is a list of lines added and
#        patches is a list of the rectangle patches added

# https://matplotlib.org/stable/api/_as_gen/matplotlib.lines.Line2D.html
for line in ls:
  line.set_c('k')
  line.set_linewidth(1.)
  line.set_zorder(5)

for r in rs:
    r.set_edgecolor('k')
    r.set_linewidth(1)
    #r.set_zorder(1)
    r.set_alpha(1)
    #r.set_facecolor('w')

# 2
# set the ticks of the x axis with an (integer index list)
ax.set_xticks( np.arange( len(df_candlestick_data) ) )
# 3
# set the xticklabels with a (date string) list
ax.set_xticklabels(xdays, rotation=45, horizontalalignment='right')

# Set Date Format
# ax.xaxis.set_major_formatter( DateFormatter('%Y-%m-%d') )
# ax.xaxis.set_minor_locator( DayLocator() ) # minor ticks on the days
ax.xaxis.set_major_locator( WeekdayLocator(MONDAY) ) # major ticks on the mondays
ax.xaxis_date() # treat the x data as dates

#justify
ax.autoscale(enable=True, axis='x', tight=True)
# rotate all ticks to 45
plt.setp( ax.get_xticklabels(), rotation=45, horizontalalignment='right' )

ax2 = ax.twinx()  

ax2.bar( np.arange( len(df_candlestick_data) ), 
        df_candlestick_data['Volume'].values,
        color=df_candlestick_data['color'].values,
        edgecolor=['black']*len(df_candlestick_data),
        width=0.6
      )

max_price=np.max(df_candlestick_data[['Open','Close', 'High', 'Low']].values )#40.79
min_price=np.min(df_candlestick_data[['Open','Close', 'High', 'Low']].values )#32.85

min_price_tick = np.floor(min_price) # 32.0
max_price_tick = np.ceil(max_price)  # 41.0
num_y_ticks=10

#spacing=(max_price_tick-min_price_tick)/5
spacing=(max_price_tick-min_price_tick)/num_y_ticks # 0.9
min_price_tick= np.floor(min_price_tick-spacing) # 31.0

min_volume=df_candlestick_data['Volume'].min() # 222 400
max_volume=df_candlestick_data['Volume'].max() # 3 638 400

min_floor_volume=np.floor( np.log10( min_volume + 1e-10 ) )#5.0 : 222 400 ==> 5.34713478291002 ==> 5
max_ceil_volume=np.ceil( np.log10( max_volume + 1e-10 ) ) # 7.0 : 3 638 400 ==> 6.560910443007641 ==> 6

#min_volume_base = np.floor( min_volume/( 10**(min_floor_volume) ) ) # 5
min_volume_tick = 1*10**min_floor_volume # 100 000#min_volume_base * 

#max_volume_base= np.ceil( max_volume/( 10**(max_ceil_volume-1) ) ) # 6
max_volume_tick = 3.0 * 10**(max_ceil_volume) # 30 000 000
ax.set_ylim(min_price_tick, max_price_tick )
ax2.set_ylim(min_volume_tick, max_volume_tick )
ax2.set_yticks([])

ax.set_title(stock_symbol)

plt.tight_layout()# Prevent x axes label from being cropped
plt.show()

     Figure 1.1 shows examples of unusually tall candles highlighted by up arrows. A minor high or low occurs within a day of each of them (before or after) except for A and B   除了 A 和 B 之外,每个信号的一天内(之前或之后)都会出现小幅高点或低点. Out of 11 signals in this figure, the method got 9 of them right, a success rate of 82% (which is unusually good). 

Figure 1.1 The up arrows highlight candles taller than average向上箭头突出显示高于平均水平的蜡烛. A minor high or minor low occurs within plus or minus one day of most of the tall candles大多数高蜡烛的正负一天内会出现小幅高点或小幅低点.

Follow these steps to use the results.

  • 1. The tall candle must be
    • above the highs of two and three days ago (for uptrends) or 
    • below the lows of two and three days ago (for down-trends).
  • 2. Find the average high-low height of the prior 22 trading days (a calendar month), not including the current candle.
  • 3. Multiply the average height by 146%. If the current candle height is above the result, then you have an unusually tall candle.

Expect a peak within a day from unusually tall candles 67% of the time during an uptrend and a valley within a day 72% of the time in a downtrend. Additional peaks or valleys can occur after that, so the minor high or low need not be wide or lasting. However, if you have a desire to buy a stock after a tall candle, consider waiting. The chances are that price will reverse and you should be able to buy at a better price如果您想在高蜡烛之后购买股票,请考虑等待。 价格很可能会反转,您应该能够以更好的价格购买. 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/136047.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

软件架构的可维护性指标——代码圈复杂度

代码圈复杂度 1、目的2、前言3、简介4、案例5、降低6、插件7、总结 1、目的 区别于常规的高内聚、低耦合、抽象、封装这种定性的指标&#xff0c;我想通过对软件架构可维护性的可量化的指标的分享&#xff0c;帮助大家在日常的开发工作中&#xff0c;有一个更为广阔的视角去审…

恒源云之oss上传数据、云台下载数据

目录 一、本地cmd上传数据二、使用云平台下载数据 一、本地cmd上传数据 需要下载恒源云客户端oss需要先将数据&#xff08;代码、数据集&#xff09;压缩成zip文件。 本地cmd打开oss&#xff0c;测试是否安成功 oss输入oss命令&#xff0c;并正确输入账号密码 oss login在个人…

Angular 使用教程——基本语法和双向数据绑定

Angular 是一个应用设计框架与开发平台&#xff0c;旨在创建高效而精致的单页面应用 Angular 是一个基于 TypeScript 构建的开发平台。它包括&#xff1a;一个基于组件的框架&#xff0c;用于构建可伸缩的 Web 应用&#xff0c;一组完美集成的库&#xff0c;涵盖各种功能&…

基于物理的多偏置射频大信号氮化镓HEMT建模和参数提取流程

标题&#xff1a;Physics-Based Multi-Bias RF Large-Signal GaN HEMT Modeling and Parameter Extraction Flow 来源&#xff1a;JOURNAL OF THE ELECTRON DEVICES SOCIETY 摘要 本文展示了一种一致的Al镓氮化物&#xff08;AlGaN&#xff09;/氮化镓&#xff08;GaN&#x…

Python使用SQLAlchemy操作sqlite

Python使用SQLAlchemy操作sqlite sqllite1. SQLite的简介2. 在 Windows 上安装 SQLite3. 使用SQLite创建数据库3.1 命令行创建数据库3.2 navicat连接数据库 4.sqlite的数据类型存储类SQLite Affinity 类型Boolean 数据类型Date 与 Time 数据类型 5. 常用的sql语法**创建表(CREA…

No183.精选前端面试题,享受每天的挑战和学习

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云课上架的前后端实战课程《Vue.js 和 Egg.js 开发企业级健康管理项目》、《带你从入…

深度学习基于python+TensorFlow+Django的花朵识别系统

欢迎大家点赞、收藏、关注、评论啦 &#xff0c;由于篇幅有限&#xff0c;只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 花朵识别系统&#xff0c;基于Python实现&#xff0c;深度学习卷积神经网络&#xff0c;通过TensorFlow搭建卷积神经…

No181.精选前端面试题,享受每天的挑战和学习

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云课上架的前后端实战课程《Vue.js 和 Egg.js 开发企业级健康管理项目》、《带你从入…

Module build failed (from ./node_modules/postcss-loader/src/index.js):

出现该错误是你可能没认真看官网的安装配置&#xff0c;可直接看该目录3&#xff0c;一个字一个字看 先安装uview 如果选择v1版本&#xff0c;建议使用npm下载&#xff0c;下面以v1版本为例&#xff0c;使用的是npm下载&#xff0c;导入uview时该文件也在node_modules文件夹里…

MySQL:日志系统

目录 概述错误日志&#xff08;error log&#xff09;慢查询日志&#xff08;slow query log&#xff09;一般查询日志( general log )中继日志&#xff08;relay log&#xff09;Buffer Pool 缓存回滚日志&#xff08;undo log)概述undo log 作用undo log 的存储机制Undo log …

Java Web——TomcatWeb服务器

目录 1. 服务器概述 1.1. 服务器硬件 1.2. 服务器软件 2. Web服务器 2.1. Tomcat服务器 2.2. 简单的Web服务器使用 1. 服务器概述 服务器指的是网络环境下为客户机提供某种服务的专用计算机&#xff0c;服务器安装有网络操作系统和各种服务器的应用系统服务器的具有高速…

stm32控制舵机sg90

一、sg90简介 首先介绍说一下什么是舵机。舵机是一种位置&#xff08;角度&#xff09;伺服的驱动器。适用于一些需要角度不断变化的&#xff0c;可以保持的控制系统。sg90就是舵机的一种。 舵机的工作原理比较简单。舵机内部有一个基准电压&#xff0c;单片机产生的PWM信号通…

C语言证明一个偶数总能表示为两个素数之和。输入一个偶数并将其分解为两个素数

完整代码&#xff1a; // 一个偶数总能表示为两个素数之和。输入一个偶数并将其分解为两个素数#include<stdio.h>//判断一个数n是否为素数 int isPrimeNumber(int n){//1不是素数if (n1){return 0;}for (int i 2; i <(n/2); i){//当有n能被整除时&#xff0c;不是素…

【Springboot】基于注解式开发Springboot-Vue3整合Mybatis-plus实现分页查询(二)——前端el-pagination实现

系列文章 【Springboot】基于注解式开发Springboot-Vue3整合Mybatis-plus实现分页查询—后端实现 文章目录 系列文章系统版本实现功能实现思路后端传入的数据格式前端el-table封装axois接口引入Element-plus的el-pagination分页组件Axois 获取后台数据 系统版本 后端&#xf…

Excel中使用数据验证、OFFSET实现自动更新式下拉选项

在excel工作簿中&#xff0c;有两个Sheet工作表。 Sheet1&#xff1a; Sheet2&#xff08;数据源表&#xff09;&#xff1a; 要实现Sheet1中的“班级”内容&#xff0c;从数据源Sheet2中获取并形成下拉选项&#xff0c;且Sheet2中“班级”内容更新后&#xff0c;Sheet1中“班…

详解—搜索二叉树

一.二叉搜索树 1.1概念 二叉搜索树又称二叉排序树&#xff0c;它或者是一棵空树&#xff0c;或者是具有以下性质的二叉树: 若它的左子树不为空&#xff0c;则左子树上所有节点的值都小于根节点的值 若它的右子树不为空&#xff0c;则右子树上所有节点的值都大于根节点的值 它的…

如何安装Node.js? 创建Vue脚手架

1.进入Node.js官网&#xff0c;点击LTS版本进行下载 Node.js (nodejs.org)https://nodejs.org/en 2.然后一直【Next】即可 3.打开【cmd】,输入【node -v】注意node和-v中间的空格 查看已安装的Node.js的版本号&#xff0c;如果可以看到版本号&#xff0c;则安装成功 创建Vue脚手…

冯·诺依曼结构

一、约翰冯诺依曼---计算机之父 约翰冯诺依曼&#xff08;John von Neumann&#xff0c;1903年12月28日—1957年2月8日&#xff09;&#xff0c;出生于匈牙利布达佩斯&#xff0c;匈牙利裔美籍数学家、计算机科学家、物理学家和化学家&#xff0c;美国国家科学院院士&#xff…

Nginx:不同域名访问同一台机器的不同项目

Nginx很简单就可以解决同一台机器同时跑两个或者多个项目&#xff0c;而且都通过域名从80端口走。 以Windows环境下nginx服务为例&#xff0c;配置文件nginx.conf中&#xff0c;http中加上 include /setup/nginx-1.20.1/conf/conf.d/*.conf;删除server部分&#xff0c;完整如…

Python基础入门例程53-NP53 前10个偶数(循环语句)

最近的博文&#xff1a; Python基础入门例程52-NP52 累加数与平均值(循环语句)-CSDN博客 Python基础入门例程51-NP51 列表的最大与最小(循环语句)-CSDN博客 Python基础入门例程50-NP50 程序员节&#xff08;循环语句&#xff09;-CSDN博客 目录 最近的博文&#xff1a; 描…