数据结构—二叉树的模拟实现(c语言)

目录

一.前言

二.模拟实现链式结构的二叉树

2.1二叉树的底层结构

2.2通过前序遍历的数组"ABD##E#H##CF##G##"构建二叉树

2.3二叉树的销毁

2.4二叉树查找值为x的节点

2.5二叉树节点个数

2.6二叉树叶子节点个数

2.7二叉树第k层节点个数

三.二叉树的遍历

3.1前序遍历

3.2中序遍历

3.3后序遍历

3.4层序遍历


一.前言

详解—数据结构《树和二叉树》-CSDN博客

上一节课我们详解了树和二叉树,这一篇博客我来带领大家来模拟实现二叉树

二.模拟实现链式结构的二叉树

2.1二叉树的底层结构

首先,有一个数据域

然后有俩个二叉树指针,分别指向他们的左孩子和右孩子

typedef char BTDataType;
typedef struct BinaryTreeNode
{
	BTDataType data;
	struct BinaryTreeNode* left;
	struct BinaryTreeNode* right;
}BTNode;

2.2通过前序遍历的数组"ABD##E#H##CF##G##"构建二叉树

1、按照前序遍历(先走根,再走左子树,再走右子树)的方法,我们首先了解大概思路

2、数组里面的#就相当于为空,所以,我们先判断if 我们的数组为#,就返回空

3、然后我们创建一个节点,如果开辟失败,返回空,我们进行判断

4、然后放入数据,

5、再然后递归开始走左子树,右子树

BTNode* BinaryTreeCreate(BTDataType* a, int n, int * pi)
{
	if ('#' == a[*pi])
	{
		++(*pi);
		return NULL;
	}

	BTNode * root = (BTNode *)malloc (sizeof(BTNode));
	if (root == NULL)
	{
		perror("malloc");
		return;
	}

	root->data = a[(*pi)++];

	root->left = BinaryTreeCreate(a, n, pi);
	root->right = BinaryTreeCreate(a, n, pi);

	return root;
}

2.3二叉树的销毁

销毁一颗二叉树

1.首先判断如果是空树,直接返回

2.利用递归从最左边的树开始进行一个节点一个节点的删除

void BinaryTreeDestory(BTNode** root)
{
	if (*root == NULL)
		return;
	
	BinaryTreeDestory((*root)->left);
	BinaryTreeDestory((*root)->right);
	free(*root);
	*root = NULL;
}

2.4二叉树查找值为x的节点

二叉树的查找在这里我用的前序遍历递归

1.先确定递归的退出条件,root等于空就返回

2.然后进行前序遍历

3.判断一下当前节点是不是x

4.在开始走左子树

5.开始走右子树

BTNode* BinaryTreeFind(BTNode* root, BTDataType x)
{
	BTNode* node;
	if (root == NULL)
		return NULL ;
	//一开始就是 x
	if (root->data == x)
	{
		return root;
	}
	//前序遍历寻找x
   	node = BinaryTreeFind(root->left, x);
	if (node)
		return node;

    node =BinaryTreeFind(root->right, x);
	if (node)
		return node;

	//遍历完找不到返回空
	return NULL;
}

2.5二叉树节点个数

二叉树的节点个数就是二叉树,左子树加上右子树加上根

这里我用的也是递归的方法,同学们可以看一下

int BinaryTreeSize(BTNode* root)
{
	return root == NULL ? 0 : BinaryTreeLeafSize(root->left) + BinaryTreeLeafSize(root->right) + 1; 
}

2.6二叉树叶子节点个数

叶节点或终端节点:度为0的节点称为叶节点;

可以观看上一篇文章取了解叶子节点

详解—数据结构《树和二叉树》-CSDN博客

查找叶子节点,也是用的递归方法,

首先,增加递归退出条件root==0

然后,如果所在的节点他的左右子树都为空,那么他就是叶子节点,返回1

最后递归遍历所有的叶子节点进行相加

int BinaryTreeLeafSize(BTNode* root)
{
	if (root == NULL)
	{
		return 0;
	}
	if (root->left == NULL && root->right == NULL)
	{
		return 1;
	}
	return BinaryTreeLeafSize(root->left) + BinaryTreeLeafSize(root->right);
}

2.7二叉树第k层节点个数

在二叉树中我们想知道,每一层有多少个节点

1.确定递归退出条件

2.如果k=1,返回1,代表找到了这一层的一个节点

3.进行递归,每一层k-1,当k=1是找到所在k层,返回一,进行相加查找当前层数据

int BinaryTreeLevelKSize(BTNode* root, int k)
{
	if (root == NULL)
	{
		return 0;
	}

	if (k == 1)
	{
		return 1;
	}
	return BinaryTreeLevelKSize(root->left, k - 1) +
		   BinaryTreeLevelKSize(root->right, k - 1);

}

三.二叉树的遍历

3.1前序遍历

二叉树的遍历了解可以详细看看上一章节

详解—数据结构《树和二叉树》-CSDN博客 

前序遍历的遍历方法,就是先走根然后左子树,右子树

我们这里还是用的递归

1.先确定递归条件

2.打印当前节点

3.走左子树

4.走右子树

void BinaryTreePrevOrder(BTNode * root)
{
	if (root == NULL)
	{
		return;
	}
	
	printf("%c ", root->data);

	BinaryTreePrevOrder(root->left);
	BinaryTreePrevOrder(root->right);
}

3.2中序遍历

中序遍历的顺序是先走左子树,再走根,再走右子树

我们的实现方法如下:

1.确定递归条件

2.走左子树

3.打印当前节点

4.走右子树

void BinaryTreeInOrder(BTNode* root)
{
	if (root == NULL)
	{
		return;
	}
	BinaryTreeInOrder(root->left);
	printf("%c ", root->data);
	BinaryTreeInOrder(root->right);
}

3.3后序遍历

后序遍历的顺序是先走左子树,再走右子树,再走根

我们的实现方法如下:

1.确定递归条件

2.走左子树

3.走右子树

4.打印当前节点

void BinaryTreePostOrder(BTNode* root)
{
	if (root == NULL)
	{
		return;
	}
	BinaryTreePostOrder(root->left);
	BinaryTreePostOrder(root->right);
	printf("%c ", root->data);
}

3.4层序遍历

首先,我们层序遍历,需要用到队列,我们先添加前几章写的队列到当前项目中,然后进行调用

1.创建并初始化一个队列

2.当根不为空时,将根节点入队,

3.保存根节点地址,访问其数据域,之后出队;

4.若根节点的左子树不为空,入队左子树,

5.判断根节点的右子树不为空,入队右子树,

6.保存队头节点地址,访问其数据域,之后出队;

8.重复上述过程的条件是队列不为空

void BinaryTreeLevelOrder(BTNode* root)
{
	Queue q;
	//初始化队列
	QueueInit(&q);
	if (root)
		QueuePush(&q, root);

	while (!QueueEmpty(&q))
	{
		BTNode* front = QueueFront(&q);
		printf("%c ", front->data);
		QueuePop(&q);

		if (front->left)
		{
			QueuePush(&q, front->left);
		}
		if (front->right)
		{
			QueuePush(&q, front->right);
		}
	}
	printf("\n");
	//销毁队列
	QueueDestroy(&q);
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/135946.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Keras实现图注意力模型GAT

简介:本文实现了一个GAT图注意力机制的网络层,可以在Keras中像调用Dense网络层、Input网络层一样直接搭积木进行网络组合。 一,基本展示 如下图所示,我们输入邻接矩阵和节点特征矩阵之后,可以直接调用myGraphAttention…

C语言之pthread_once实例总结(八十三)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 人生格言: 人生…

史上最全最新Ubuntu20.04安装教程(图文)

总的来说,安装Ubantu包含以下三个步骤: 一、安装虚拟机 二、Ubuntu镜像下载 三、虚拟机配置 一、安装虚拟机 选择安装VMware Workstation,登录其官网下载安装包,链接如下: 下载 VMware Workstation Pro​www.vmwa…

设计模式之--原型模式(深浅拷贝)

原型模式 缘起 某天,小明的Leader找到小明:“小明啊,如果有个发简历的需求,就是有个简历的模板,然后打印很多份,要去一份一份展示出来,用编程怎么实现呢?” 小明一听,脑袋里就有了…

ARM64 linux并发与同步之内存屏障

1.2 内存屏障 1.2.1 概念理解 原理部分比较苦涩难懂,我们先不过多详细介绍这部分的由来和经过,接下来着重讲解什么用途和实现; ARM64架构中提供了3条内存屏障指令。 数据存储屏障(Data Memory Barrier, DMB)指令。数据同步屏障(Data Synch…

劲松HPV防治诊疗中心发布:HPV感染全面防治解决方案

在当今社会,HPV(人乳头瘤病毒)感染问题已成为广大公众关注的焦点。作为一种高度传染性的病毒,HPV感染不仅可能导致生殖器疣,还可能引发各种癌症。面对这一严重威胁,劲松HPV防治诊疗中心以其专业的医疗团队、正规的治疗流程和全方位…

Python基础入门例程51-NP51 列表的最大与最小(循环语句)

最近的博文: Python基础入门例程50-NP50 程序员节(循环语句)-CSDN博客 Python基础入门例程49-NP49 字符列表的长度-CSDN博客 Python基础入门例程48-NP48 验证登录名与密码(条件语句)-CSDN博客 目录 最近的博文&…

函数极限求解方法归纳

1、连续函数直接代入值(加减不可以部分代入值) 例题1 配凑构造等价无穷小 等价无穷小 注意:不要在加减中部分使用等价无穷小,可以利用拆极限的方式求,拆出来的每一部分都要有极限,如果有一部分没有极限就是…

STM32F4X定时器之通用定时器

一、STM32通用定时器概述 通用定时器包括一个16位或32位自动重载计数器,可通过可编程预分频器进行驱动。定时器可以实现多种功能,包括测量输入信号的脉冲宽度和生成输出波形,通过使用定时器预分频器和RCC时钟控制器预分频器,可以…

目标检测——Yolo系列(YOLOv1/2/v3/4/5/x/6/7/8)

目标检测概述 什么是目标检测? 滑动窗口(Sliding Window) 滑动窗口的效率问题和改进 滑动窗口的效率问题:计算成本很大 改进思路 1:使用启发式算法替换暴力遍历 例如 R-CNN,Fast R-CNN 中使用 Selectiv…

C++算法:完美矩形

题目 给你一个数组 rectangles ,其中 rectangles[i] [xi, yi, ai, bi] 表示一个坐标轴平行的矩形。这个矩形的左下顶点是 (xi, yi) ,右上顶点是 (ai, bi) 。 如果所有矩形一起精确覆盖了某个矩形区域,则返回 true ;否则&#xf…

AI 绘画 | Stable Diffusion WebUI的基本设置和插件扩展

前言 Stable Diffusion WebUI是一个基于Gradio库的浏览器界面,用于配置和生成AI绘画作品,并且进行各种精细地配置。它支持目前主流的开源AI绘画模型,例如NovelAI/Stable Diffusion。 在基本设置方面,Stable Diffusion WebUI的默…

asp.net外卖网站系统VS开发mysql数据库web结构c#编程Microsoft Visual Studio

一、源码特点 asp.net外卖网站系统 是一套完善的web设计管理系统,系统采用mvc模式(BLLDALENTITY)系统具有完整的源代码和数据库,系统主要采用B/S模式开发。开发环境为vs2010,数据库为mysql,使用c#语…

Git的原理与使用(一)

目录 Git初始 Git安装 Git基本操作 创建git本地仓库 配置git 工作区,暂存区,版本库 添加文件,提交文件 查看.git文件 修改文件 版本回退 小结 Git初始 git是一个非常强大的版本控制工具.可以快速的将我们的文档和代码等进行版本管理. 下面这个实例看理解下为什么需…

CountDownLatch和CyclicBarrier详解

1. CountDownLatch 1.1 简介 CountDownLatch 是 Java 中并发包(java.util.concurrent)提供的一种同步工具,用于在多线程环境中协调多个线程之间的执行顺序。它的作用是允许一个或多个线程等待其他线程完成操作。 CountDownLatch 通过一个计…

java使用geotools导出shp文件

SHP格式是一种矢量数据格式,用于存储地理信息系统(GIS)数据。 SHP文件由一系列有序的文件组成,我们导出的shp文件包括.shp、.shx、.dbf、.prj以及.fix文件。 .shp(shape)文件:存储矢量地图数据&…

自定义类型:联合和枚举

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 目录 前言 1. 联合体 1.1 联合体类型的声明 1.2 联合体的特点 1.3 相同成员的结构体和联合体对比 1.4 联合体大小的计算 1.5 联合的一个练习 2. 枚举类型 2.1 枚举类型的声明…

思维模型 目标效应

本系列文章 主要是 分享 思维模型,涉及各个领域,重在提升认知。明确目标,激发内在动机。 1 目标效应的应用 1.1 目标效应在教育领域的应用-棉花糖实验 美国斯坦福大学心理学系的教授米歇尔(Walter Mischel)曾经进行了…

1204. 错误票据

题目: 1204. 错误票据 - AcWing题库 思路: 将输入的数据存入数组,从小到大排序后遍历,若 (a[i] a[i - 1])res1 a[i]--->重号;若(a[i] - a[i - 1] > 2)res2 a[i] - 1--->断号。 难点:题目只告诉我们输入…

1977 智慧校园平台开发与实现JSP【程序源码+文档+调试运行】

摘要 本文旨在设计和实现一个智慧校园平台系统,以满足管理员、教师和学生三类用户的需求。管理员拥有最高管理权限,可对教师和学生用户进行管理;教师用户可查看和管理本班学生信息、成绩等;学生用户可查看个人信息、考试成绩等。…