基于Transformer架构的ChatGPT:三步带你了解它的工作原理

作者:Insist--

个人主页:insist--个人主页

梦想从未散场,传奇永不落幕,博主会持续更新优质网络知识、Python知识、Linux知识以及各种小技巧,愿你我共同在CSDN进步

目录

一、Transformer架构

1. 自注意力层

2. 前馈神经网络层

3. Transformer编码器

4. Transformer解码器

二、训练过程

1. 预训练阶段

2. 微调阶段

三、生成文本

四、总结


前言

ChatGPT是一种基于Transformer架构的自然语言对话系统,通过预训练和微调阶段的学习,可以生成符合特定任务的文本。本文详细介绍了ChatGPT的工作原理,包括Transformer架构的组成和训练过程,以及如何使用解码器生成文本。

c26bf1b861bd43db8693237d874b31cc.jpg

一、Transformer架构

194b7bbad07f4fefac3665fdb6efc574.png

ChatGPT的核心是Transformer架构,它是一种深度学习模型,主要用于处理自然语言处理任务,如语言翻译、文本生成等。Transformer模型由多个自注意力层(Self-Attention Layer)和前馈神经网络层(Feed-Forward Neural Network Layer)组成。

1. 自注意力层

自注意力层是Transformer模型的核心部分,它通过计算输入序列中每个位置上的词向量之间的相似度来生成每个位置的表示向量。具体来说,自注意力层会对输入序列中的每个词向量进行加权平均,生成一个全局表示向量,这个向量可以捕捉到输入序列中的语义信息。

2. 前馈神经网络层

前馈神经网络层是一种全连接神经网络,它将自注意力层的输出向量进行进一步的处理,生成每个位置的输出向量。在前馈神经网络层中,每个位置的输出向量是由前一层中的隐藏状态和当前位置的输入向量共同决定的

3. Transformer编码器

Transformer编码器是由多个自注意力层和前馈神经网络层交替堆叠而成的。它将输入序列分成若干个长度相等的块,并对每个块进行独立的编码。编码器的输出向量是所有块中对应位置的向量拼接而成

4. Transformer解码器

Transformer解码器也是由多个自注意力层和前馈神经网络层交替堆叠而成的。它接收编码器的输出向量作为输入,并生成输出序列。在解码过程中,解码器会使用编码器输出的上下文向量(Context Vector)来指导输出序列的生成。

二、训练过程

ChatGPT的训练过程主要分为两个阶段:预训练阶段和微调阶段。

1. 预训练阶段

在预训练阶段,ChatGPT使用大量的语料库进行训练。语料库可以是互联网上的文本、社交媒体上的对话、新闻文章等等。ChatGPT将语料库中的文本视为输入序列,并使用Transformer编码器对其进行编码。编码器的输出向量被用作目标序列的表示向量。在这个阶段,ChatGPT会通过最小化预测误差来优化模型参数。

2. 微调阶段

在微调阶段,ChatGPT使用特定的任务数据进行训练,比如,对话数据、问题回答数据等等。这些任务数据通常会包含一些特定的问题和回答,用于指导模型的学习。在这个阶段,ChatGPT会使用目标序列的表示向量来生成输出序列。比如,对于对话任务,ChatGPT会根据用户输入的消息和之前的对话历史来生成回复。通过最小化损失函数,ChatGPT可以学习到如何生成符合特定任务的文本。

三、生成文本

在生成文本时,ChatGPT会使用解码器来生成输出序列。解码器会接收编码器的输出向量作为输入,并使用自注意力机制来生成每个位置的表示向量。然后,解码器会使用前馈神经网络层来生成每个位置的输出向量,并将这些向量拼接起来生成完整的输出序列。在生成文本的过程中,ChatGPT会根据任务数据中的上下文信息来指导生成过程,例如根据之前的对话历史来生成回复。

四、总结

ChatGPT是一种基于自然语言生成的对话系统,它使用Transformer架构来学习语言模型并生成输出文本。通过预训练和微调阶段的学习过程,ChatGPT可以学习到如何根据输入序列生成符合特定任务的文本。在生成文本时,ChatGPT会使用解码器来生成输出序列,并根据任务数据中的上下文信息来指导生成过程。通过这种方式,ChatGPT可以实现与用户进行自然流畅的对话交互。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/135826.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

AWS云服务器EC2实例进行操作系统迁移

AWS云服务器EC2实例进行操作系统迁移 文章目录 AWS云服务器EC2实例进行操作系统迁移1. 亚马逊EC2云服务器简介1.2 亚马逊EC2云务器与弹性云服务器区别 2. 亚马逊EC2云服务器配置流程2.1 亚马逊EC2云服务器实例配置2.1.1 EC2实例购买教程2.1.1 EC2实例初始化配置2.1.2 远程登录E…

Flutter实践一:package组织

1.架构概览 为了降低Flutter工程里lib的复杂度,应尽量拆分一些代码成为独立的package。如图: 我们将通用的组件、领域模型、API、features、存储、repository等抽取成了单独的package。这时lib只剩下多国语言、基本的页面、路由等代码了: 这…

Linux组调度

为什么引入组调度可以参考这篇文章的讨论。核心原因是基础的调度算法都是基于任务的,如果用户A有10个任务,用户B只有1个任务,假设这些任务的优先级都相同,那么用户A得到的CPU时间将是用户B的10倍,这样从任务的角度看虽…

Linux应用开发基础知识——LCD上的矢量字体Freetype(六)

前言: 使用 buildroot 来给 ARM 板编译程序、编译库会很简单,以后系统讲解 buildroot 时再使用 buildroot,现在我们还是手工交叉编译 freetype,这种方法在编译、安装一些小程序时很有用。 Freetype 是开源的字体引擎库&#xff0c…

Java13新增特性

前言 前面的文章,我们对Java9、Java10、Java11、Java12 的特性进行了介绍,对应的文章如下 Java9新增特性 Java10新增特性 Java11新增特性 Java12新增特性 今天我们来一起看一下Java13这个版本的一些重要信息 版本介绍 Java 13 是在 2019 年 9 月 17 日…

recycleView(三)动态修改背景色

效果图 1.关键代码 1. // 定义一个变量来记录滑动的距离var scrollDistance 0// 在RecycleView的滑动监听器中更新滑动的距离binding.recyclerView.addOnScrollListener(object : RecyclerView.OnScrollListener() {override fun onScrolled(recyclerView: RecyclerView, …

PCB知识补充

系列文章目录 文章目录 系列文章目录参考文献PCB知识互连线电阻过孔/铜箔电流能力铜箔载流能力过孔载流能力 热设计电磁兼容及部分要求 参考文献 [1]牛森,张敏娟,银子燕.高速PCB多板互联的电源完整性分析[J].单片机与嵌入式系统应用,2023,23(09). [2]陈之秀,刘洋,张涵舒等.高…

通用结构化剪枝DepGraph

文章目录 0. 前言一. 第一部分: Torch-Pruning1.1 传统的剪枝流程 - ResNet-18结构化剪枝1.2 Torch-Pruning剪枝 - ResNet-18结构化剪枝1.3 Torch-Pruning剪枝 - 遍历所有分组1.4 Torch-Pruning剪枝 - 剪枝器 High-level Pruners1.5 Torch-Pruning剪枝 - 拓展到更复杂的神经网…

【递归】求根节点到叶节点数字之和(Java版)

目录 1.题目解析 2.讲解算法原理 3.代码 1.题目解析 LCR 049. 求根节点到叶节点数字之和 给定一个二叉树的根节点 root ,树中每个节点都存放有一个 0 到 9 之间的数字。 每条从根节点到叶节点的路径都代表一个数字: 例如,从根节点到叶节点…

No179.精选前端面试题,享受每天的挑战和学习

🤍 前端开发工程师(主业)、技术博主(副业)、已过CET6 🍨 阿珊和她的猫_CSDN个人主页 🕠 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 🍚 蓝桥云课签约作者、已在蓝桥云课上架的前后端实战课程《Vue.js 和 Egg.js 开发企业级健康管理项目》、《带你从入…

开发者测试2023省赛--UnrolledLinkedList测试用例

测试结果 官方提交结果 EclEmma PITest 被测文件UnrolledLinkedList.java /** This source code is placed in the public domain. This means you can use it* without any restrictions.*/package net.mooctest;import java.util.AbstractList; import java.util.Collectio…

牛客网刷题笔记231112 最小k位数+二叉树层序遍历+SQL异常邮件概率

算法题牛客网NC119 最小的k个数 题目: 用了一下python列表的便利,不知道在面试时允许用不。当然最简单的方法其实是直接sort()一下取前k位数即可。本次写的思路如下: 用一个最大容量为k的列表存储结果,遍历n个元素,当…

Python基础入门例程52-NP52 累加数与平均值(循环语句)

最近的博文: Python基础入门例程51-NP51 列表的最大与最小(循环语句)-CSDN博客 Python基础入门例程50-NP50 程序员节(循环语句)-CSDN博客 Python基础入门例程49-NP49 字符列表的长度-CSDN博客 目录 最近的博文: 描述 输入描…

(离散数学)命题及命题的真值

答案: (5)不是命题,因为真值不止一个 (6)不是命题,因为不是陈述句 (7)不是命题,因为不是陈述句 (8)不是命题,真值不唯一

Reeds-Shepp曲线

汽车都有一个最小转向半径,Reeds-Shepp曲线由几段半径固定的圆弧和一段直线段拼接组成,而且圆弧的半径就是汽车的最小转向半径。从起始点到目标点的路径长度是指汽车中心运动轨迹的长度,也就是所有圆弧的弧长和直线段的长度之和。 当环境中…

顺序查找和折半查找

顺序查找的算法思想 顺序查找,又叫“线性查找”,通常用于线性表 算法思想:从头到脚挨个找 顺序查找的实现 typedef struct{ //查找表的数据结构(顺序表)ElemType *elem; //动态数组基址int TableLen; //表的长度 }S…

华为ensp:rip宣告

ip全部配置好 R1 进入r1视图模式 rip network 192.168.1.0 network 1.0.0.0 R2 进入r2视图模式 rip network 192.168.2.0 network 1.0.0.0 这样就完成了宣告 display ip routing-table 查看路由表

Leetcode—191.位1的个数【简单】

2023每日刷题&#xff08;二十七&#xff09; Leetcode—191.位1的个数 实现代码 int hammingWeight(uint32_t n) {int ans 0;for(int i 0; i < 32; i) {if(n & ((long long)1 << i)) {ans;}}return ans; }运行结果 翻转比特1思路 就解法一的代码实现来说&am…

零基础学习Matlab,适合入门级新手,了解Matlab

一、认识Matlab Matlab安装请参见博客 安装步骤 1.界面 2.清空环境变量及命令 &#xff08;1&#xff09;clear all &#xff1a;清除Workspace中的所有变量 &#xff08;2&#xff09;clc&#xff1a;清除Command Window中的所有命令 二、Matlab基础 1.变量命名规则 &a…

Django的ORM操作

文章目录 1.ORM操作1.1 表结构1.1.1 常见字段和参数1.1.2 表关系 2.ORM2.1 基本操作2.2 连接数据库2.3 基础增删改查2.3.1 增加2.3.2 查找2.3.4 删除2.3.4 修改 1.ORM操作 orm&#xff0c;关系对象映射&#xff0c;本质翻译的。 1.1 表结构 实现&#xff1a;创建表、修改表、…