NLP领域的突破催生大模型范式的形成与发展

       当前的大模型领域的发展,只是范式转变的开始,基础大模型才刚刚开始改变人工智能系统在世界上的构建和部署方式

1、大模型范式

1.1   传统思路(2019年以前)

       NLP领域历来专注于为具有挑战性的语言任务定义设计系统,其愿景是擅长这些任务的模型将为下游应用程序带来胜任的语言系统。NLP任务包括针对整个句子或文档的分类任务(例如,情感分类,如预测电影评论是正面的还是负面的),序列标记任务,其中我们对句子或文档中的每个单词或短语进行分类(例如,预测每个词是动词还是名词,或者哪个词的跨度指的是人还是组织),跨度关系分类,(例如,关系提取或解析,如人和位置是否通过当前居住地关系链接,或动词和名词是否通过主语-动词关系链接)和生成任务,产生条件化的新文本强烈地依赖于输入(例如,生成文本的翻译或摘要,识别或生成语音,或在对话中做出响应)。在过去,NLP任务有不同的研究社区,开发特定于任务的架构,通常基于不同模型的管道,每个模型执行语言子任务,如标记分割,句法分析或共指消解。

1.2  2019年的突破

       基础模型来自于NLP领域的发展,并迅速抢占了其他诸多领域的注意力。分水岭是2019年,一石激起千层浪!在2019年之前,使用语言模型的自监督学习基本上是NLP的一个子领域,它与NLP的其他发展并行。在2019年之后,使用语言模型的自监督学习越来越成为NLP的基础,因为使用BERT已经成为常态。接受单一模型可以用于如此广泛的任务,标志着基础模型时代的开始。具体来说,自我监督学习的一波发展- BERT 、 GPT-2 ,RoBERTA ,T5,BART -迅速跟进,采用Transformer架构,结合更强大的句子深度双向编码器,并扩展到更大的模型和数据集。

基础大模型范式的兴起已经开始在口语和书面语中发挥类似的作用。现代自动语音识别(ASR)模型,如wav2vec 2.0,仅在语音音频的大型数据集上进行训练,然后在音频上进行调整,并与ASR任务相关联[Baevski et al. 2020]。由于基础模型范式带来的变化,NLP研究和实践的重点已经从为不同任务定制架构转移到探索如何最好地利用基础模型。对适应方法的研究已经蓬勃发展,基础模型的惊人成功也导致研究兴趣转向分析和理解基础模型基础模型所展示的成功生成也导致了对语言生成任务(如摘要和对话生成)的研究的蓬勃发展。

1.3 大模型范式的形成(2019年以后)

   大模型+微调 :   

       执行每个任务的主要现代方法是使用单个基础大模型,并使用相对少量的特定于每个任务的注释数据(情感分类,命名实体标记,翻译,摘要)对其进行稍微调整,以创建适应模型。事实证明,这是一种非常成功的方法:对于上面描述的绝大多数任务,稍微适应任务的基础模型大大优于以前的模型或专门为执行该任务而构建的模型管道。

     标注的力量:

       万物数字化、语言标注万物(人类智能综合的缩影,表现形式,语言文字,形态:论文、书籍、网络资料、文章、话语、视频等等一切形态)

2、 大模型范式在研究界的发展

1)研究界的同质化。例如,类似的基于变换器的序列建模方法核心共性挑战)现在应用于文本[Devlin et al. 2019;拉德福et al. 2019; Raffel et al. 2019],图像[Dosovitskiy et al. 2020; Chen et al. 2020 d]、语音[Liu et al. 2020 d]、表格数据[Yin et al. 2020]、蛋白质序列[Rives et al. 2021]、有机分子[Rothchild et al. 2021]、和强化学习[Chen et al. 2021 b; Janner et al. 2021]。这些例子指出了一个可能的未来,我们有一套统一的工具来开发各种模式的基础模型[Tamkin et al. 2021 b]。

2)研究社区之间的实际模型以多模态模型的形式同质化-例如,基于语言和视觉数据训练的基础模型[Luo et al. 2020; Kim et al. 2021 a; Cho et al. 2021; Ramesh et al. 2021;拉德福et al. 2021]。数据在某些领域自然是多模态的,例如,医疗图像、结构化数据、医疗保健中的临床文本(医疗保健)。因此,多模态基础模型是融合关于一个领域的所有相关信息的自然方式,并适应也跨越多个模式的任务。基金会的模式也导致了规模的惊人的出现。例如,GPT-3 [Brown et al. 2020],与GPT-2的15亿个参数相比,有1750亿个参数,允许上下文学习,其中语言模型可以通过简单地向下游任务提供提示(任务的自然语言描述)来适应下游任务,这是一种既没有专门训练也没有预期出现的新兴属性。

3、大模型范式的未来

      有巨大的经济激励来推动基础大模型的能力和规模,因此我们预计未来几年将取得稳步的技术进步。但是,一项主要依赖于紧急行为的技术是否适合广泛部署到人们身上还不清楚。很明显,我们需要谨慎,现在是建立专业规范的时候了,这将使负责任的研究和部署基础模型成为可能。学术界和工业界需要在这方面进行合作:工业界最终会就如何部署基础模型做出具体决定,但我们也应该依靠学术界,因为学术界的学科多样性和围绕知识生产和社会效益的非商业激励措施,为技术和道德基础的基础模型的开发和部署提供独特的指导。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/131752.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【算法与数据结构】93、LeetCode复原 IP 地址

文章目录 一、题目二、解法三、完整代码 所有的LeetCode题解索引,可以看这篇文章——【算法和数据结构】LeetCode题解。 一、题目 二、解法 思路分析:参照【算法与数据结构】131、LeetCode分割回文串的思路,需要将IP字符串进行分割&#xff0…

“基于RflySim平台飞控底层算法开发”系列专题培训 (第三期)

>> RflySim平台系列专题培训 RflySim平台是一个生态系统或工具链(官网:https://doc.rflysim.com),发起于北航可靠飞行控制研究组,主要用于遵循基于模型设计的思想进行无人系统的控制和安全测试。本平台选择MATL…

使用MVS-GaN HEMT紧凑模型促进基于GaN的射频和高电压电路设计

标题:Facilitation of GaN-Based RF- and HV-Circuit Designs Using MVS-GaN HEMT Compact Model 来源:IEEE TRANSACTIONS ON ELECTRON DEVICES(19年) 摘要—本文阐述了基于物理的紧凑器件模型在研究器件行为细微差异对电路和系统…

目标检测最新创新点: EMS-YOLO:首个用于目标检测的直接训练脉冲神经网络

EMS-YOLO:第一个用于目标检测的深度直接训练脉冲神经网络,首次使用代理梯度训练深度 SNN 进行检测,并设计全脉冲残差块EMS-ResNet,代码刚刚开源!单位:国科大, 西安交大, 清华, 北大, 华为 脉冲神经网络 (S…

151. 反转字符串中的单词

151. 反转字符串中的单词 原题链接:完成情况:解题思路:参考代码:错误经验吸取 原题链接: 151. 反转字符串中的单词 https://leetcode.cn/problems/reverse-words-in-a-string/description/ 完成情况: 解…

音频——解析 PCM 数据

文章目录 生成 PCM 数据16bit16bit mono16bit stereo16bit 4 channel16bit 8 channel24bit解析 PCM 数据解析 24bit 数据程序源码生成 PCM 源码解析 PCM 源码生成 PCM 数据 16bit 16bit mono int 48k_16bit_modo[] = {0, 4276, 8480, 12539, 16383, 19947, 23169, 25995, 28…

华为防火墙vrrp+hrp双机热备主备备份(两端为交换机)

默认上下来全两个vrrp主都是左边 工作原理: vrrp刚开机都是先initialize状态,然后切成active或standb状态。 hrp使用18514端口,且用的单播,要策略放行,由主设备发hrp心跳报文 如果设备为acitve状态时自动优先级为65…

CS224W5.1——消息传递和节点分类

从之前的文中,学习了如何使用图表示学习进行节点分类。在这节中,将讨论另一种方法,消息传递。将引入半监督学习,利用网络中存在的相关性来预测节点标签。其中一个关键概念是集体分类,包括分配初始标签的局部分类器、捕…

strerror函数详解之【错误码探秘】

目录 一,strerror函数简介 二,strerror函数的基本用法 三,errno变量 一,strerror函数简介 当程序出现错误时,了解错误的具体信息对于调试和修复问题至关重要。在C语言中,我们可以使用strerror函数来获取…

基于SSM的超市库存商品管理系统设计与实现

末尾获取源码 开发语言:Java Java开发工具:JDK1.8 后端框架:SSM 前端:采用JSP技术开发 数据库:MySQL5.7和Navicat管理工具结合 服务器:Tomcat8.5 开发软件:IDEA / Eclipse 是否Maven项目&#x…

Pytorch常用的函数(四)深度学习中常见的上采样方法总结

Pytorch常用的函数(四)深度学习中常见的上采样方法总结 我们知道在深度学习中下采样的方式比较常用的有两种: 池化 步长为2的卷积 而在上采样过程中常用的方式有三种: 插值 反池化 反卷积 不论是语义分割、目标检测还是三维重建等模型&#xff0…

使用大型语言模型进行文本摘要

路易斯费尔南多托雷斯 📝 Text Summarization with Large Language Models。通过单击链接,您将能够逐步阅读完整的过程,并与图进行交互。谢谢你! 一、介绍 2022 年 11 月 30 日,标志着机器学习历史上的重要篇章。就在这…

振南技术干货集:研发版本乱到“妈不认”? Git!(1)

注解目录 1、关于 Git 1.1Git 今生 (Git 和 Linux 的生父都是 Linus,振南给你讲讲当初关于 Git 的爱恨情愁,其背后其实是开源与闭源两左阵营的明争暗斗。) 1.2Git的爆发 (Git 超越时代的分布式思想。振南再给你讲讲旧金山三个年轻人创办 GitHub&…

KCC@广州与 TiDB 社区联手—广州开源盛宴

10月21日,KCC广州与 TiDB 社区联手,在海珠区保利中悦广场 29 楼召开了一次难忘的开源盛宴。这不仅仅是 KCC广州的又一次线下见面,更代表着与 TiDB 社区及广州技术社区的首次深度合作。 活动的策划与组织由 KCC广州负责人 - 惠世冀、PingCAP 的…

mysql基础 --子查询

文章目录 子查询 子查询 一个查询语句,嵌套在另一个查询语句内部;子查询先执行,其结果被外层主查询使用;子查询放入括号内;子查询放在比较条件的右侧;子查询返回一条,为单行子查询;…

解决win11更新后,文件夹打不开的bug

更新win11系统了,给我更了个bug,找了好多解决方案,发现下面这个可以解决问题。 第一步 找到注册表 第二步 备份注册表 为了防止意外情况,备份注册表。如有意外问题,可以导入导出的注册表进行恢复。 第三步 删除指定…

华为防火墙vrrp+hrp双机热备负载分担(两端为交换机)

主要配置: FW1 hrp enable hrp interface GigabitEthernet1/0/2 remote 172.16.0.2 interface GigabitEthernet1/0/0 这里可以假想为接两条外线,一条外线对应一个vrrid undo shutdown ip address 1.1.1.2 255.255.255.0 vrrp vrid 3 virtual-ip 1.1.1…

手写C++ 实现链表的反转、删除、合并

目录 一、手写List成员方法 1.1 打印链表 1.2 删除链表节点 1.3 链表中倒数第k个节点 1.4 反转链表 1.5 合并两个排序链表 二、完整代码 一、C实现链表成员方法 在上一篇博客《手写链表C》,实现了基本的List类。在面试中,经常被问到List如何反转、…

ROS 学习应用篇(二)话题Topic学习之话题的发布与订阅

顾名思义,这是一个异步的消息传达过程 首先是消息的发布,接着是消息的订阅 话题发布 由发布者发布一个“消息”的数据结构,再由订阅者订阅这个消息结构。 再开始撰写一段程序之前,我们需要在程序代码中引入库→节点初始化→创…

合成数据加速机器视觉学习

虽然机器学习在基于视觉的自动化中的应用正在增长,但许多行业都面临着挑战,并难以在其计算机视觉应用中实施它。这在很大程度上是由于需要收集许多图像,以及与准确注释这些图像中的不同产品相关的挑战。 该领域的最新趋势之一是利用合成数据…