MATLAB中deconvwnr函数用法

目录

语法

说明

示例

使用 Wiener 滤波对图像进行去模糊处理


        deconvwnr函数的功能是使用 Wiener 滤波对图像进行去模糊处理。

语法

J = deconvwnr(I,psf,nsr)
J = deconvwnr(I,psf,ncorr,icorr)
J = deconvwnr(I,psf)

说明

J = deconvwnr(I,psf,nsr) 使用 Wiener 滤波算法对图像 I 进行反卷积,从而返回去模糊后的图像 J。psf 是对 I 进行卷积的点扩散函数 (PSF)。nsr 是加性噪声的噪信功率比。在估计图像与真实图像之间的最小均方误差意义上,该算法是最优的。

J = deconvwnr(I,psf,ncorr,icorr) 对图像 I 进行反卷积,其中 ncorr 是噪声的自相关函数,icorr 是原始图像的自相关函数。

J = deconvwnr(I,psf) 使用 Wiener 滤波算法对图像 I 进行反卷积,无估计噪声。在不含噪情况下,Wiener 滤波等效于理想的逆滤波。

示例

使用 Wiener 滤波对图像进行去模糊处理

        将图像读入工作区并显示它。

I = im2double(imread('cameraman.tif'));
imshow(I);
title('Original Image (courtesy of MIT)');

如图所示:

仿真运动模糊。

LEN = 21;
THETA = 11;
PSF = fspecial('motion', LEN, THETA);
blurred = imfilter(I, PSF, 'conv', 'circular');
figure, imshow(blurred)

如图所示:

仿真加性噪声。

noise_mean = 0;
noise_var = 0.0001;
blurred_noisy = imnoise(blurred, 'gaussian', ...
                        noise_mean, noise_var);
figure, imshow(blurred_noisy)
title('Simulate Blur and Noise')

如图所示:

        尝试在假设没有噪声的情况下进行还原。

estimated_nsr = 0;
wnr2 = deconvwnr(blurred_noisy, PSF, estimated_nsr);
figure, imshow(wnr2)
title('Restoration of Blurred, Noisy Image Using NSR = 0')

        如图所示:

尝试使用更好的噪信功率比估计值进行还原。

estimated_nsr = noise_var / var(I(:));
wnr3 = deconvwnr(blurred_noisy, PSF, estimated_nsr);
figure, imshow(wnr3)
title('Restoration of Blurred, Noisy Image Using Estimated NSR');

如图所示:

参数说明

I — 模糊图像

        模糊图像,指定为任意维度的数值数组。

psf — 点扩散函数

        点扩散函数,指定为数值数组。

nsr — 噪信比

        噪信比,指定为非负标量或与图像 I 大小相同的数值数组。如果 nsr 是数组,则它表示频谱域。为 nsr 指定 0 等效于创建一个理想的逆滤波器。

ncorr — 噪声的自相关函数

噪声的自相关函数,指定为任意大小或维度(不超过原始图像)的数值数组。

  • ​如果 ncorr 的维度与图像 I 的维度匹配,则值对应于每个维度内的自相关。

  • ​如果 ncorr 是向量,psf 也是向量,则 ncorr 中的值表示第一个维度的自相关函数。

  • 如果 ncorr 是向量,psf 是数组,则一维自相关函数通过对称性外插至 psf 的所有非单一维度。

  • 如果 ncorr 是标量,则值表示噪声的功率。

icorr — 图像的自相关函数

图像的自相关函数,指定为任意大小或维度(不超过原始图像)的数值数组。

  • ​如果 icorr 的维度与图像 I 的维度匹配,则值对应于每个维度内的自相关。

  • ​如果 icorr 是向量,psf 也是向量,则 icorr 中的值表示第一个维度的自相关函数。

  • 如果 icorr 是向量,psf 是数组,则一维自相关函数通过对称性外插至 psf 的所有非单一维度。

  • 如果 icorr 是标量,则值表示图像的功率。

J — 去模糊后的图像

去模糊后的图像,以数值数组形式返回。J 与 I 的数据类型相同。

提示

  • ​输出图像 J 可能出现算法中使用的离散傅里叶变换引入的振铃效应。要减少振铃效应,请在调用 deconvwnr 之前使用 I = edgetaper(I,psf)。

参考

[1] Gonzalez, R. C., and R. E. Woods. Digital Image Processing. Addison-Wesley Publishing Company, Inc., 1992.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/130919.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

操作系统 | 编写内核

🌈个人主页:Sarapines Programmer🔥 系列专栏:《操作系统实验室》🔖少年有梦不应止于心动,更要付诸行动。 目录结构 1. 操作系统实验之编写内核 1.1 实验目的 1.2 实验内容 1.3 实验步骤 1.4 实验过程 …

1.linux极速进阶

目录 概述文件相关vi文件编辑查找字符串查找某一行内容复制粘贴快速删除快速跳到文件首行和末行 进程相关ps/netstatjpstopkill linux三剑客grepsed添加方面操作删除方面替换操作 awk 结束 概述 身为后端开发,大数据平台搭建,对 linux 系统的操作最起码…

高阶组件和Hooks

目录 1. 高阶组件(Higher-Order Components) 1.1 创建高阶组件 1.2 使用高阶组件 2. Hooks 2.1 使用useState Hook管理状态 2.2 创建自定义Hook 结论 1. 高阶组件(Higher-Order Components) 高阶组件是一个接受一个组件作为…

面向对象--------三巨头

꒰˃͈꒵˂͈꒱ write in front ꒰˃͈꒵˂͈꒱ ʕ̯•͡˔•̯᷅ʔ大家好,我是xiaoxie.希望你看完之后,有不足之处请多多谅解,让我们一起共同进步૮₍❀ᴗ͈ . ᴗ͈ ა 本文由xiaoxieʕ̯•͡˔•̯᷅ʔ 原创 CSDN 如需转载还请通知˶⍤⃝˶个人主页&am…

Apache Airflow (四) :Airflow 调度shell命令

🏡 个人主页:IT贫道_大数据OLAP体系技术栈,Apache Doris,Clickhouse 技术-CSDN博客 🚩 私聊博主:加入大数据技术讨论群聊,获取更多大数据资料。 🔔 博主个人B栈地址:豹哥教你大数据的个人空间-豹…

Unity 制作血量滑动条(Slider)

1.创建UI slider 层级面板点击右键-UI-slider 2.调整UI位置 选择2D视图,调整锚点和滑动条位置 3.PS中制作UI 导出2个图层,PNG格式。 4.改成精灵模式(sprite2d) 把两个PNG导入Unity仓库中,选中两个图,右…

【LeetCode刷题笔记】堆和优先级队列

358. K 距离间隔重排字符串 解题思路: 大根堆 + 队列 , 1)首先 计数数组 统计 每个字符出现的次数 ,然后将 计数 > 0 的 字符 和 次数 一起放入 大根堆 ,大根堆中

Matlab的多项式留数与极点的计算

Matlab的多项式留数与极点的计算 以下面的多项式为例: 运算代码: clc clear closesyms p % 定义多项式 Zp(5*p^571*p^370*p)/(2*p^635*p^4117*p^236); % 提取分子与分母 [I,D]numden(Zp); Idouble(coeffs(I,p,"All"));%分子 Ddouble(coeffs…

Git系列之Git集成开发工具及git扩展使用

🎉🎉欢迎来到我的CSDN主页!🎉🎉 🏅我是君易--鑨,一个在CSDN分享笔记的博主。📚📚 🌟推荐给大家我的博客专栏《Git实战开发》。🎯🎯 &a…

基于若依的ruoyi-nbcio流程管理系统仿钉钉流程json转bpmn的flowable的xml格式(支持并行网关)

更多ruoyi-nbcio功能请看演示系统 gitee源代码地址 前后端代码: https://gitee.com/nbacheng/ruoyi-nbcio 演示地址:RuoYi-Nbcio后台管理系统 这个章节来完成并行网关,前端无需修改,直接后端修改就可以了。 1、并行网关后端修…

C#开发的OpenRA游戏之世界存在的属性CombatDebugOverlay(3)

C#开发的OpenRA游戏之世界存在的属性CombatDebugOverlay(3) 这次来分析CombatDebugOverlay属性,这个属性只有在调试游戏的时候才会使用。当你设置这个属性的时候,就可以看到如下图的结果: 可以看到物品的周边都有一个圆圈,以及有一些十字的点位标志。 那些十字表示的点…

【ATTCK】MITRE Caldera 朴素贝叶斯规划器

CALDERA是一个由python语言编写的红蓝对抗工具(攻击模拟工具)。它是MITRE公司发起的一个研究项目,该工具的攻击流程是建立在ATT&CK攻击行为模型和知识库之上的,能够较真实地APT攻击行为模式。 通过CALDERA工具,安全…

C++源文件的编译过程 学习 CMake 文档的前置知识

OHHHH,发现自己的基础知识真他妈的是呼呼漏风,,,,,,,,,,, 尴尬得意识到,不仅是英语水平有问题,他码的基础知识…

Web实验总

目录 网站需求: 思路: 实验步骤: 第一步:准备工作 第二步:新建一个存储网页的目录 第三步:修改本地hosts映射 第四步:修改配置文件,建立基于http服务的网站 1)创建用户song和…

iOS移动应用安全加固:保护您的App免受恶意攻击的重要步骤

目录 iOS移动应用安全加固:保护您的App免受恶意攻击的重要步骤 摘要 引言 一、APP加固的概念 二、APP加固方案的比较 三、保护iOS应用的安全 四、总结 参考资料 摘要 本文介绍了移动应用程序(App)加固的概念和流程,以及市…

[模版总结] - 树的基本算法1 - 遍历

树结构定义 一种非线性存储结构,具有存储“一对多”关系的数据元素集合 种类 General Tree TrieB/B 树二叉树 满/完满/完全二叉树 完美BT : 除了叶子结点外所有节点都有两个字节点,每一层都完满填充完全BT: 除最后一层以外其他每一层都完美…

单元测试工具-Junit

文章目录 一. 认识Junit二. Junit中常用的注解1. Test2. Disabled3. BeforeAll & AfterAll4. BeforeEach & AfterEach 三. ParameterizedTest参数化1. 单参数2. 多参数2.1. CSV 获取参数2.2. 方法获取参数 四. Order控制测试用例的执行顺序五. 断言六. 测试套件1. 通过…

Docker进阶——再次认识docker的概念 Docker的结构 Docker镜像结构 镜像的构建方式

前言 在微服务大量应用的互联网时代,经常能看到docker的身影。作为docker的爱好者(在服务器安装MySQL,Redis。。。我用的都是docker),我也会持续深入学习和认识docker。 本篇博客再次介绍docker的基本概念&#xff0…

SmartBear正式收购Stoplight,并计划在核心API设计、文档和门户产品中集成其功能

不久前,软件开发和可视化工具提供商SmartBear正式宣布收购全球领先的API设计公司Stoplight。这一收购是为了打造业内最全面的API开发平台,为寻求现代化API实践的开发团队提供更好的透明度、自动化与生产力。将Stoplight在API方面的优势(包括治…

吴恩达《机器学习》7-1->7-4:过拟合问题、代价函数、线性回归的正则化、正则化的逻辑回归模型

一、过拟合的本质 过拟合是指模型在训练集上表现良好,但在新数据上的泛化能力较差。考虑到多项式回归的例子,我们可以通过几个模型的比较来理解过拟合的本质。 线性模型(欠拟合): 第一个模型是一个线性模型&#xff0…