C# OpenCvSharp 玉米粒计数

效果

项目

代码

using OpenCvSharp;
using System;
using System.Drawing;
using System.Text;
using System.Windows.Forms;

namespace OpenCvSharp_Demo
{
    public partial class frmMain : Form
    {
        public frmMain()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";

        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;

        Mat image;
        Mat result_image;

        StringBuilder sb = new StringBuilder();

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;

            pictureBox1.Image = null;
            pictureBox2.Image = null;
            textBox1.Text = "";

            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            image = new Mat(image_path);
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            //test
            image_path = "test_img/1.jpg";
            image = new Mat(image_path);
            pictureBox1.Image = new Bitmap(image_path);
        }

        private void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }
            textBox1.Text = "检测中,请稍等……";
            pictureBox2.Image = null;
            Application.DoEvents();

            result_image = image.Clone();

            //二值化操作
            Mat grayimg = new Mat();
            Cv2.CvtColor(image, grayimg, ColorConversionCodes.BGR2GRAY);
            Mat BinaryImg = new Mat();
            Cv2.Threshold(grayimg, BinaryImg, 240, 255, ThresholdTypes.Binary);
            //Cv2.ImShow("二值化", BinaryImg);

            //腐蚀
            Mat kernel = Cv2.GetStructuringElement(MorphShapes.Rect, new OpenCvSharp.Size(15, 15));
            Mat morhImage = new Mat();
            Cv2.Dilate(BinaryImg, morhImage, kernel, null, 2);
            //Cv2.ImShow("morphology", morhImage);

            //距离变换:用于二值化图像中的每一个非零点距自己最近的零点的距离,距离变换图像上越亮的点,代表了这一点距离零点的距离越远
            Mat dist = new Mat();
            Cv2.BitwiseNot(morhImage, morhImage);
            /*
            OpenCV中,函数distanceTransform()用于计算图像中每一个非零点像素与其最近的零点像素之间的距离,
            输出的是保存每一个非零点与最近零点的距离信息,图像上越亮的点,代表了离零点的距离越远。
            用途:
            可以根据距离变换的这个性质,经过简单的运算,用于细化字符的轮廓和查找物体质心(中心)。
            */
            /*
            距离变换的处理图像通常都是二值图像,而二值图像其实就是把图像分为两部分,即背景和物体两部分,物体通常又称为前景目标。
            通常我们把前景目标的灰度值设为255(即白色),背景的灰度值设为0(即黑色)。
            所以定义中的非零像素点即为前景目标,零像素点即为背景。
            所以图像中前景目标中的像素点距离背景越远,那么距离就越大,如果我们用这个距离值替换像素值,那么新生成的图像中这个点越亮。
            */
            //User:用户自定义
            //L1:  曼哈顿距离
            //L2:  欧式距离
            //C:   棋盘距离
            Cv2.DistanceTransform(morhImage, dist, DistanceTypes.L1, DistanceTransformMasks.Mask3);
            Cv2.Normalize(dist, dist, 0, 1.0, NormTypes.MinMax);   //范围在0~1之间
            //Cv2.ImShow("distance", dist);

            //形态学处理
            Mat MorphImg = new Mat();
            dist.ConvertTo(MorphImg, MatType.CV_8U);
            Cv2.Threshold(MorphImg, MorphImg, 0.99, 255, ThresholdTypes.Binary);  //上图像素值在0~1之间
            kernel = Cv2.GetStructuringElement(MorphShapes.Rect, new OpenCvSharp.Size(7, 3), new OpenCvSharp.Point(-1, -1));
            Cv2.MorphologyEx(MorphImg, MorphImg, MorphTypes.Open, kernel);  //开操作
            //Cv2.ImShow("t-distance", MorphImg);

            //找到种子的轮廓区域
            OpenCvSharp.Point[][] contours;
            HierarchyIndex[] hierarchly;
            Cv2.FindContours(MorphImg, out contours, out hierarchly, RetrievalModes.External, ContourApproximationModes.ApproxSimple, new OpenCvSharp.Point(0, 0));
            Mat markers = Mat.Zeros(image.Size(), MatType.CV_8UC3);
            int x, y, w, h;
            Rect rect;
            for (int i = 0; i < contours.Length; i++)
            {
                // Cv2.DrawContours(markers, contours, i, Scalar.RandomColor(), 2, LineTypes.Link8, hierarchly);
                rect = Cv2.BoundingRect(contours[i]);
                x = rect.X;
                y = rect.Y;
                w = rect.Width;
                h = rect.Height;
                Cv2.Circle(result_image, x + w / 2, y + h / 2, 20, new Scalar(0, 0, 255), -1);
                if (i >= 9)
                {
                    Cv2.PutText(result_image, (i + 1).ToString(), new OpenCvSharp.Point(x + w / 2 - 18, y + h / 2 + 8), HersheyFonts.HersheySimplex, 0.8, new Scalar(0, 255, 0), 2);
                }
                else
                {
                    Cv2.PutText(result_image, (i + 1).ToString(), new OpenCvSharp.Point(x + w / 2 - 8, y + h / 2 + 8), HersheyFonts.HersheySimplex, 0.8, new Scalar(0, 255, 0), 2);
                }
            }

            textBox1.Text = "number of corns: " + contours.Length;
            pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());


        }

        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }

        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }
    }
}

下载

Demo下载

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/125834.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

OpenGL_Learn08(坐标系统与3D空间)

目录 1. 概述 2. 局部空间 3. 世界空间 4. 观察空间 5. 剪裁空间 6. 初入3D 7. 3D旋转 8. 多个正方体 9. 观察视角 1. 概述 OpenGL希望在每次顶点着色器运行后&#xff0c;我们可见的所有顶点都为标准化设备坐标(Normalized Device Coordinate, NDC)。也就是说&#x…

C++跨模块传递CRT引发问题

SDK新增加了一个接口&#xff0c;参数使用std::vector<Class>&&#xff0c;传给dll函数中填充数值&#xff0c;然后应用层拿到这个vector出现了崩溃 越界等问题&#xff0c;调了很久&#xff0c;之前知道这个问题&#xff0c;没有想起来&#xff0c;耽误了许多时间。…

用Python的requests库来模拟爬取地图商铺信息

由于谷歌地图抓取商铺信息涉及到API使用和反爬虫策略&#xff0c;直接爬取可能会遇到限制。但是&#xff0c;我们可以使用Python的requests库来模拟爬取某个网页&#xff0c;然后通过正则表达式或其他文本处理方法来提取商铺信息。以下是一个简单的示例&#xff1a; # 导入requ…

uniapp+uview2.0+vuex实现自定义tabbar组件

效果图 1.在components文件夹中新建MyTabbar组件 2.组件代码 <template><view class"myTabbarBox" :style"{ backgroundColor: backgroundColor }"><u-tabbar :placeholder"true" zIndex"0" :value"MyTabbarS…

网页分析和xml.etree库

源代码&#xff1a; Lib/xml/etree/ElementTree.py 该xml.etree.ElementTree模块实现了一个简单高效的 API&#xff0c;用于解析和创建 XML 数据。 一、说明 这是一个简短的使用教程xml.etree.ElementTree&#xff08;ET简而言之&#xff09;。目标是演示该模块的一些构建块和基…

基于FPGA的模板匹配红外目标跟踪算法设计

为什么要写这篇文章 我写这篇文章的原因是一天在B站看到了一个大神发的视频是关于跟踪一个无人机的&#xff0c;看到作者跟网友的回复说是用的图像匹配算法&#xff0c;我就在网上搜索相关资料&#xff0c;最终找到一篇文献。文献中对该算法的评价很高&#xff0c;满足制导系统…

为你摘星辰

欢迎来到程序小院 为你摘星辰 玩法&#xff1a;鼠标控制人物方向&#xff0c;点击鼠标键上升人物&#xff0c;经过⭐️⭐️吃掉获得分数&#xff0c;共三次生命&#xff0c;碰到红色障碍物减去一次生命&#xff0c; 人物掉落底部游戏结束&#xff0c;看你获得多少分^^。开始游…

排序算法的空间复杂度和时间复杂度

一、排序算法的时间复杂度和空间复杂度 排序算法 平均时间复杂度 最坏时间复杂度 最好时间复杂度 空间复杂度 稳定性 冒泡排序 O(n) O(n) O(n) O(1) 稳定 直接选择排序 O(n) O(n) O(n) O(1) 不稳定 直接插入排序 O(n) O(n) O(n) O(1) 稳定 快速排序 O(n…

ChatGPT付费创作系统V2.4.9独立版 +WEB端+ H5端 + 小程序端系统测试安装教程

播资源提供的GPT付费体验系统最新版系统是一款基于ThinkPHP框架开发的AI问答小程序&#xff0c;是基于国外很火的ChatGPT进行开发的Ai智能问答小程序。当前全民热议ChatGPT&#xff0c;流量超级大&#xff0c;引流不要太简单&#xff01;一键下单即可拥有自己的GPT&#xff01;…

【TASKING】如何提高编译器的编译速度

文章目录 前言一、How to Improve the compilation speed.1.1、Cache generated code to improve the compilation speed1.2 Influencing the Build TimeSFR File&#xff08;勾了可能会报错&#xff0c;好像得配合include一起用&#xff0c;暂未研究清除&#xff0c;仅供参考&…

死亡游戏:密室互猜硬币规则及其破解方法

今天听到一个有点小恐怖的死亡游戏 规则是 将你和最好的朋友 分别关进两个不同的房间 要关 100天 在被关的时间里 你们无法进行任何的沟通 每一天 会有一个人在你和朋友的房间分别抛一次硬币 你们需要去猜对方硬币的正反面 只需要一个人猜对了 则 相安无事 如果两个人都猜错了…

android手机平板拓展电脑音频

&#xff08;1&#xff09;首先确保电脑上有声卡&#xff0c;就是电脑右下角小喇叭能调音量&#xff0c;不管电脑会不会响&#xff0c;如果小喇叭标记了个错误&#xff0c;说明没有声卡&#xff0c;安装图上的虚拟声卡软件。 &#xff08;2&#xff09;图上第一个PC免安装及局…

图像二值化阈值调整——Triangle算法,Maxentropy方法

一. Triangle方法 算法描述&#xff1a;三角法求分割阈值最早见于Zack的论文《Automatic measurement of sister chromatid exchange frequency》主要是用于染色体的研究&#xff0c;该方法是使用直方图数据&#xff0c;基于纯几何方法来寻找最佳阈值&#xff0c;它的成立条件…

Qt 项目实战 | 音乐播放器

Qt 项目实战 | 音乐播放器 Qt 项目实战 | 音乐播放器播放器整体架构创建播放器主界面媒体对象状态实现播放列表实现桌面歌词添加系统托盘图标 资源下载 官方博客&#xff1a;https://www.yafeilinux.com/ Qt开源社区&#xff1a;https://www.qter.org/ 参考书&#xff1a;《Q…

怎么建模HEC-RAS【案例-利用HEC-RAS分析河道建筑对洪水管控的作用】 洪水计算、堤防及岸坡稳定计算、冲淤分析、壅水计算、冲刷计算、水工构筑物建模

背景介绍 人口数量的增长、不合理的区域规划和无计划的工程实践&#xff0c;让洪水对于人类而言变得极具风险。 为了最大程度地减少洪水造成的损害&#xff0c;采取管控措施往往需要在初期执行&#xff0c;为了研究这些管控措施&#xff0c;需要确定河段桥梁和作为调节的水利设…

[工业自动化-7]:西门子S7-15xxx编程 - PLC主站 - 电源模块

目录 前言&#xff1a; 一、主站电源PM VS PS 1.1 主站PM电源模块(PM) 1.2 主站PS电源模块 1.3 PM/PS电源模块区别 1.4 如何选择PM/PS电源 1.5 什么时候必须使用PM模块 1.6 什么时候必须使用PS模块 二、背板总线 三、电源模块的安装 前言&#xff1a; 一、主站电源PM…

电商项目之Java8函数式接口落地实践

文章目录 1 问题背景2 前言3 多处重复的重试机制代码4 优化后的代码5 进一步优化 1 问题背景 在电商场景中&#xff0c;会调用很多第三方的云服务&#xff0c;比如发送邮件、发起支付、发送验证码等等。由于网络存在抖动&#xff0c;有时候发起调用后会拿到500的状态码&#xf…

jquery的项目,html页面使用vue3 +element Plus

vue3&#xff0c;element引入 <script src"../vue3.3.8/vue.global.js"></script> <link rel"stylesheet" href"js/elementPlus/index.css"> <script src"js/elementPlus/index.full.js"></script>…

Flutter笔记:关于Flutter中的大文件上传(上)

Flutter笔记 关于Flutter中的大文件上传&#xff08;上&#xff09; 大文件上传背景与 Flutter 端实现文件分片传输 作者&#xff1a;李俊才 &#xff08;jcLee95&#xff09;&#xff1a;https://blog.csdn.net/qq_28550263 邮箱 &#xff1a;291148484163.com 本文地址&#…

开发知识点-Pygame

Pygame Pygame最小开发框架与最小游戏游戏开发入门单元开篇 Pygame简介安装游戏开发入门语言开发工具的选择 Pygame最小开发框架与最小游戏 游戏开发入门单元开篇 Pygame简介安装 游戏开发入门语言开发工具的选择