难度:简单
给你两个整数
left
和right
,在闭区间[left, right]
范围内,统计并返回 计算置位位数为质数 的整数个数。计算置位位数 就是二进制表示中
1
的个数。
- 例如,
21
的二进制表示10101
有3
个计算置位。示例 1:
输入:left = 6, right = 10 输出:4 解释: 6 -> 110 (2 个计算置位,2 是质数) 7 -> 111 (3 个计算置位,3 是质数) 9 -> 1001 (2 个计算置位,2 是质数) 10-> 1010 (2 个计算置位,2 是质数) 共计 4 个计算置位为质数的数字。示例 2:
输入:left = 10, right = 15 输出:5 解释: 10 -> 1010 (2 个计算置位, 2 是质数) 11 -> 1011 (3 个计算置位, 3 是质数) 12 -> 1100 (2 个计算置位, 2 是质数) 13 -> 1101 (3 个计算置位, 3 是质数) 14 -> 1110 (3 个计算置位, 3 是质数) 15 -> 1111 (4 个计算置位, 4 不是质数) 共计 5 个计算置位为质数的数字。提示:
1 <= left <= right <= 106
0 <= right - left <= 104
题解:
class Solution(object): def countPrimeSetBits(self, left, right): res = [] count = 0 for i in range(left,right+1): res.append(bin(i).split('b')[1].count('1')) # print(res) for j in res: if self.is_prime1(j) is True: count += 1 return count def is_prime1(self,x): if x == 1: return False else: for i in range(2, x): if x % i == 0: return False return True