【深度神经网络(DNN)】实现车牌识别

文章目录

  • 前言
  • 一、数据集介绍
  • 二、步骤
    • 1.导包
    • 2.参数配置
    • 3.数据处理
    • 4.模型定义
    • 5.模型训练
    • 6.模型预测
  • 总结


前言

课内实践作业 车牌识别


一、数据集介绍

1.车牌识别数据集:VehicleLicense车牌识别数据集包含16151张单字符数据,所有的单字符均为严格切割且都转换为黑白二值图像(如下第一行:训练数据所示)。
2.characterData:车牌识别数据集

二、步骤

1.导包

代码如下(示例):


#导入需要的包
import os
import zipfile
import random
import json
import cv2
import numpy as np
from PIL import Image
import paddle
import matplotlib.pyplot as plt
print(cv2.__version__)

在这里插入图片描述

2.参数配置

'''
参数配置
'''
train_parameters = {
    "input_size": [1, 20, 20],                           #输入图片的shape
    "class_dim": -1,                                     #分类数
    "src_path":"data/data47799/characterData.zip",       #原始数据集路径
    "target_path":"/home/aistudio/data/dataset",        #要解压的路径 
    "train_list_path": "/home/aistudio/train_data.txt",              #train_data.txt路径
    "eval_list_path": "/home/aistudio/val_data.txt",                  #eval_data.txt路径
    "label_dict":{},                                    #标签字典
    "readme_path": "/home/aistudio/data/readme.json",   #readme.json路径
    "train_batch_size": 32                           #训练的轮数
}

3.数据处理

def unzip_data(src_path,target_path):
    '''
    解压原始数据集,将src_path路径下的zip包解压至data/dataset目录下
    '''
    if(not os.path.isdir(target_path)):    
        z = zipfile.ZipFile(src_path, 'r')
        z.extractall(path=target_path)
        z.close()
    else:
        print("文件已解压")
``
```py
def get_data_list(target_path,train_list_path,eval_list_path):
    '''
    生成数据列表
    '''
    #存放所有类别的信息
    class_detail = []
    #获取所有类别保存的文件夹名称
    data_list_path=target_path 
   
    class_dirs = os.listdir(data_list_path)

   
    if '__MACOSX' in class_dirs:
        class_dirs.remove('__MACOSX')
    # #总的图像数量
    all_class_images = 0
    # #存放类别标签
    class_label=0
    # #存放类别数目
    class_dim = 0
    # #存储要写进eval.txt和train.txt中的内容
    trainer_list=[]
    eval_list=[]
    #读取每个类别
    for class_dir in class_dirs:
        if class_dir != ".DS_Store":
            class_dim += 1
            #每个类别的信息
            class_detail_list = {}
            eval_sum = 0
            trainer_sum = 0
            #统计每个类别有多少张图片
            class_sum = 0
            #获取类别路径 
            path = os.path.join(data_list_path,class_dir)
            # print(path)
            # 获取所有图片
            img_paths = os.listdir(path)
            for img_path in img_paths:                                  # 遍历文件夹下的每个图片
                if img_path =='.DS_Store':
                    continue
                name_path = os.path.join(path,img_path)                       # 每张图片的路径
                if class_sum % 10 == 0:                                 # 每10张图片取一个做验证数据
                    eval_sum += 1                                       # eval_sum为测试数据的数目
                    eval_list.append(name_path + "\t%d" % class_label + "\n")
                else:
                    trainer_sum += 1 
                    trainer_list.append(name_path + "\t%d" % class_label + "\n")#trainer_sum测试数据的数目
                class_sum += 1                                          #每类图片的数目
                all_class_images += 1                                   #所有类图片的数目
            
            # 说明的json文件的class_detail数据
            class_detail_list['class_name'] = class_dir             #类别名称
            class_detail_list['class_label'] = class_label          #类别标签
            class_detail_list['class_eval_images'] = eval_sum       #该类数据的测试集数目
            class_detail_list['class_trainer_images'] = trainer_sum #该类数据的训练集数目
            class_detail.append(class_detail_list)  
            #初始化标签列表
            train_parameters['label_dict'][str(class_label)] = class_dir
            class_label += 1
            
    #初始化分类数
    train_parameters['class_dim'] = class_dim
    print(train_parameters)
    #乱序  
    random.shuffle(eval_list)
    with open(eval_list_path, 'a') as f:
        for eval_image in eval_list:
            f.write(eval_image) 
    #乱序        
    random.shuffle(trainer_list) 
    with open(train_list_path, 'a') as f2:
        for train_image in trainer_list:
            f2.write(train_image) 

    # 说明的json文件信息
    readjson = {}
    readjson['all_class_name'] = data_list_path                  #文件父目录
    readjson['all_class_images'] = all_class_images
    readjson['class_detail'] = class_detail
    jsons = json.dumps(readjson, sort_keys=True, indent=4, separators=(',', ': '))
    with open(train_parameters['readme_path'],'w') as f:
        f.write(jsons)
    print ('生成数据列表完成!')
'''
参数初始化
'''
src_path=train_parameters['src_path']
target_path=train_parameters['target_path']
train_list_path=train_parameters['train_list_path']
eval_list_path=train_parameters['eval_list_path']
batch_size=train_parameters['train_batch_size']
'''
解压原始数据到指定路径
'''

unzip_data(src_path,target_path)

#每次生成数据列表前,首先清空train.txt和eval.txt
with open(train_list_path, 'w') as f: 
    f.seek(0)
    f.truncate() 
with open(eval_list_path, 'w') as f: 
    f.seek(0)
    f.truncate() 
    
#生成数据列表   
get_data_list(target_path,train_list_path,eval_list_path)

在这里插入图片描述

'''
自定义数据集
'''
import paddle
from paddle.io import Dataset
class MyDataset(Dataset):
    """
    步骤一:继承paddle.io.Dataset类
    """
    def __init__(self, mode='train'):
        """
        步骤二:实现构造函数,定义数据集大小
        """
        self.data = []
        self.label = []
        super(MyDataset, self).__init__()
        if mode == 'train':
            #批量读入数据
            print(train_list_path)
            with open(train_list_path, 'r') as f:
                lines = [line.strip() for line in f]
                for line in lines:
                    #分割数据和标签
                    img_path, lab = line.strip().split('\t')
                    #读入图片
                    img = cv2.imread(img_path)
                    img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
                    img = np.array(img).astype('float32')
                    #图片归一化处理
                    img = img/255.0
                    #将数据同一添加到data和label中
                    self.data.append(img)
                    self.label.append(np.array(lab).astype('int64'))
        else:
            #测试集同上
            with open(eval_list_path, 'r') as f:
                lines = [line.strip() for line in f]
                for line in lines:
                    img_path, lab = line.strip().split('\t')
                    img = cv2.imread(img_path)
                    img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
                    img = np.array(img).astype('float32')
                    img = img/255.0
                    self.data.append(img)
                    self.label.append(np.array(lab).astype('int64'))
    def __getitem__(self, index):
        """
        步骤三:实现__getitem__方法,定义指定index时如何获取数据,并返回单条数据(训练数据,对应的标签)
        """
        #返回单一数据和标签
        data = self.data[index]
        label = self.label[index]
        #注:返回标签数据时必须是int64
        # print(data)
        return data, np.array(label, dtype='int64')
    def __len__(self):
        """
        步骤四:实现__len__方法,返回数据集总数目
        """
        #返回数据总数
        return len(self.label)

# 测试定义的数据集
train_dataset = MyDataset(mode='train')
eval_dataset = MyDataset(mode='val')
print('=============train_dataset =============')
#输出数据集的形状和标签
print(train_dataset.__getitem__(1)[0].shape,train_dataset.__getitem__(1)[1])
#输出数据集的长度
print(train_dataset.__len__())
print('=============eval_dataset =============')
#输出数据集的形状和标签
for data, label in eval_dataset:
    print(data.shape, label)
    break
#输出数据集的长度
print(eval_dataset.__len__())

在这里插入图片描述

4.模型定义

import paddle.fluid as fluid
from paddle.fluid.dygraph import Linear

class MyDNN(fluid.dygraph.Layer):
    def __init__(self):
        super(MyDNN,self).__init__()
        ####请完善网络模型定义
        # self.hidden1 = paddle.nn.Linear(in_features=20*20,out_deatures=200)
        # self.hidden2 = paddle.nn.Linear(in_features=200,out_deatures=100)
        # self.hidden3 = paddle.nn.Linear(in_features=100,out_deatures=100)
        # self.out = paddle.nn.Linear(in_features=100,out_deatures=65)
        self.hidden1 = Linear(20*20,200,act='relu')
        self.hidden2 = Linear(200,100,act='relu')
        self.hidden3 = Linear(100,100,act = 'relu')
        self.hidden4 = Linear(100,65,act='softmax')

    # forward 定义执行实际运行时网络的执行逻辑
    def forward(self,input):       
        #-1 表示这个维度的值是从x的元素总数和剩余维度推断出来的,有且只能有一个维度设置为-1
        x = fluid.layers.reshape(input, shape=[-1,20*20]) 

        x=self.hidden1(x)
        x=self.hidden2(x)
        x=self.hidden3(x)
        y=self.hidden4(x)
        return y

5.模型训练

#step3:训练模型
# 用Model封装模型
model = paddle.Model(MyDNN())
# 定义损失函数


model.prepare(paddle.optimizer.Adam(parameters=model.parameters()),paddle.nn.CrossEntropyLoss(),paddle.metric.Accuracy(topk=(1,5)))
# model.prepare(paddle.optimizer.SGD(parameters=model.parameters()),paddle.nn.CrossEntropyLoss(),paddle.metric.Accuracy(topk=(1,5)))

# 训练可视化VisualDL工具的回调函数
visualdl = paddle.callbacks.VisualDL(log_dir='visualdl_log')
# 启动模型全流程训练
model.fit(train_dataset,            # 训练数据集
           eval_dataset,            # 评估数据集
          epochs=100,            # 总的训练轮次
          batch_size = batch_size,    # 批次计算的样本量大小
          shuffle=True,             # 是否打乱样本集
          verbose=1,                # 日志展示格式
          save_dir='./chk_points/', # 分阶段的训练模型存储路径
          callbacks=[visualdl])     # 回调函数使用
#保存模型
model.save('model_save_dir')

在这里插入图片描述

license_plate = cv2.imread('work/车牌.png')
print(license_plate.shape)
gray_plate = cv2.cvtColor(license_plate, cv2.COLOR_RGB2GRAY) 
ret, binary_plate = cv2.threshold(gray_plate, 175, 255, cv2.THRESH_BINARY) #ret:阈值,binary_plate:根据阈值处理后的图像数据
# 按列统计像素分布
result = []
for col in range(binary_plate.shape[1]):
    result.append(0)
    for row in range(binary_plate.shape[0]):
        result[col] = result[col] + binary_plate[row][col]/255
# print(result) 
#记录车牌中字符的位置
character_dict = {}
num = 0
i = 0
while i < len(result):
    if result[i] == 0:
        i += 1
    else:
        index = i + 1
        while result[index] != 0:
            index += 1
        character_dict[num] = [i, index-1]
        num += 1
        i = index
# print(character_dict)        
#将每个字符填充,并存储
characters = []
for i in range(8):
    if i==2:
        continue
    padding = (170 - (character_dict[i][1] - character_dict[i][0])) / 2
    #将单个字符图像填充为170*170
    ndarray = np.pad(binary_plate[:,character_dict[i][0]:character_dict[i][1]], ((0,0), (int(padding), int(padding))), 'constant', constant_values=(0,0))
    ndarray = cv2.resize(ndarray, (20,20))
    cv2.imwrite('work/' + str(i) + '.png', ndarray)
    characters.append(ndarray)
    
def load_image(path):
    img = paddle.dataset.image.load_image(file=path, is_color=False)
    img = img.astype('float32')
    img = img[np.newaxis, ] / 255.0
    return img

在这里插入图片描述

将标签进行转换
print('Label:',train_parameters['label_dict'])
match = {'A':'A','B':'B','C':'C','D':'D','E':'E','F':'F','G':'G','H':'H','I':'I','J':'J','K':'K','L':'L','M':'M','N':'N',
        'O':'O','P':'P','Q':'Q','R':'R','S':'S','T':'T','U':'U','V':'V','W':'W','X':'X','Y':'Y','Z':'Z',
        'yun':'云','cuan':'川','hei':'黑','zhe':'浙','ning':'宁','jin':'津','gan':'赣','hu':'沪','liao':'辽','jl':'吉','qing':'青','zang':'藏',
        'e1':'鄂','meng':'蒙','gan1':'甘','qiong':'琼','shan':'陕','min':'闽','su':'苏','xin':'新','wan':'皖','jing':'京','xiang':'湘','gui':'贵',
        'yu1':'渝','yu':'豫','ji':'冀','yue':'粤','gui1':'桂','sx':'晋','lu':'鲁',
        '0':'0','1':'1','2':'2','3':'3','4':'4','5':'5','6':'6','7':'7','8':'8','9':'9'}
L = 0
LABEL ={}
for V in train_parameters['label_dict'].values():
    LABEL[str(L)] = match[V]
    L += 1
print(LABEL)

6.模型预测

with fluid.dygraph.guard():
    model=MyDNN()#模型实例化
    model_dict,_=fluid.load_dygraph('model_save_dir.pdparams')
    model.load_dict(model_dict)#加载模型参数
    model.eval()#评估模式
    lab=[]
    for i in range(8):
        if i==2:
            continue
        infer_imgs = []
        infer_imgs.append(load_image('work/' + str(i) + '.png'))
        infer_imgs = np.array(infer_imgs)
        infer_imgs = fluid.dygraph.to_variable(infer_imgs)
        result=model(infer_imgs)
        lab.append(np.argmax(result.numpy()))
print(lab)
display(Image.open('work/车牌.png'))
for i in range(len(lab)):
    print(LABEL[str(lab[i])],end='')

在这里插入图片描述

总结

通过对实现车牌识别让我对深度神经网络(DNN)有了更深的认识

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/124094.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【网络协议】聊聊HTTPDNS如何工作的

传统 DNS 存在哪些问题&#xff1f; 域名缓存问题 我们知道CND会进行域名解析&#xff0c;但是由于本地会进行缓存对应的域名-ip地址&#xff0c;所以可能出现过期数据的情况。 域名转发问题 出口 NAT 问题 域名更新问题 解析延迟问题 因为在解析DNS的时候&#xff0c;需要进行…

MySQL:锁机制

目录 概述三种层级的锁锁相关的 SQLMyISAM引擎下的锁InnoDB引擎下的锁InnoDB下的表锁和行锁InnoDB下的共享锁和排他锁InnoDB下的意向锁InnoDB下的记录锁&#xff0c;间隙锁&#xff0c;临键锁记录锁&#xff08;Record Locks&#xff09;间隙锁&#xff08;Gap Locks&#xff0…

IDEA Plugin插件开发相关踩坑

1 前言 最近在研究IDEA插件开发&#xff0c;踩了不少坑&#xff0c;特意在这里记录一下…… 2 Java相关类找不到 照着网上一些资料&#xff0c;想要实现代码审计自动提示功能&#xff0c;需要继承AbstractBaseJavaLocalInspectionTool 结果import一片爆红&#xff0c;找不到相…

从F5 BIG-IP RCE漏洞(CVE-2023-46747)来看请求走私的利用价值

0x01 前言 F5 BIG-IP广域流量管理器是一种网络流量管理设备&#xff0c;用于提升链路性能与可用性。F5在金融行业具有特别广泛的使用量&#xff0c;做过各大银行攻防演练的小伙伴对这个系统应该不会陌生。 最近爆出的CVE-2023-46747漏洞能达到远程RCE的效果&#xff0c;属于严重…

论文阅读——InternImage(cvpr2023)

arxiv&#xff1a;https://arxiv.org/abs/2211.05778 github&#xff1a;https://github.com/OpenGVLab/InternImage 一、介绍 大部分大模型都是基于transformer的&#xff0c;本文是一个基于CNN的视觉基础模型。使用可变性卷积deformable convolution作为核心操作&…

Python tkinter实现复刻Windows记事本UI和菜单的文本编辑器(一)

下一篇&#xff1a;Python tkinter实现复刻Windows记事本UI和菜单的文本编辑器&#xff08;二&#xff09;-CSDN博客 介绍&#xff1a; Windows操作系统中自带了一款记事本应用程序&#xff0c;通常用于记录文字信息&#xff0c;具有简单文本编辑功能。Windows的记事本可以新…

Go和JavaScript结合使用:抓取网页中的图像链接

前言 在当今数字化时代&#xff0c;数据是金钱的源泉&#xff0c;对于许多项目和应用程序来说&#xff0c;获取并利用互联网上的数据是至关重要的。其中之一的需求场景是从网页中抓取图片链接&#xff0c;这在各种项目中都有广泛应用&#xff0c;特别是在动漫类图片收集项目中…

漏刻有时百度地图API实战开发(6)多个标注覆盖层级导致不能响应点击的问题

漏刻有时百度地图API实战开发(1)华为手机无法使用addEventListener click 的兼容解决方案漏刻有时百度地图API实战开发(2)文本标签显示和隐藏的切换开关漏刻有时百度地图API实战开发(3)自动获取地图多边形中心点坐标漏刻有时百度地图API实战开发(4)显示指定区域在移动端异常的解…

【MATLAB源码-第70期】基于matlab的萤火虫算法(FA)的栅格路径规划,输出最短路径和适应度曲线。

操作环境&#xff1a; MATLAB 2022a 1、算法描述 萤火虫算法&#xff08;Firefly Algorithm&#xff0c;FA&#xff09;是由剑桥大学的Xin-She Yang在2008年提出的一种元启发式优化算法。该算法的灵感来源于萤火虫闪烁的行为特征&#xff0c;主要用于解决连续的优化问题。萤…

在 Gorm 中学习分页和排序

一个全面的指南&#xff0c;教您在 GORM 中实现分页和排序&#xff0c;以实现高效的数据检索和展示 高效的数据检索和展示是应用程序开发的关键方面。GORM&#xff0c;强大的 Go 对象关系映射库&#xff0c;为开发人员提供了强大的工具来实现这一目标。在本指南中&#xff0c;…

去中心化数据云项目Oort主网即将上线

备受期待的去中心化数据云项目Oort&#xff0c;今日已通过官方X账号官宣&#xff0c;将于纽约时间11月27日正式上线主网Olympus Protocol。届时&#xff0c;用户也能够通过Oort的Ale Wallet钱包和开发者API使用主网&#xff0c;并可通过OORT浏览器查询交易和合约&#xff0c;开…

代码随想录 Day41 动态规划09 LeetCode T121 买卖股票的最佳时机 T122 买卖股票的最佳时机II

前言 这两题看起来是不是有点眼熟,其实我们在贪心章节就已经写过了这两道题,当时我们用的是将利润分解,使得我们始终得到的是最大利润 假如第 0 天买入&#xff0c;第 3 天卖出&#xff0c;那么利润为&#xff1a;prices[3] - prices[0]。 相当于(prices[3] - prices[2]) (pri…

小程序 打开方式 页面效果 表单页面 点击跳到详情页 图标 获取后台数据 进行页面渲染

请求地址&#xff1a;geecg-uniapp 同源策略 数据请求 获取后台数据 ui库安装 冲突解决&#xff08;3&#xff09;-CSDN博客 一.uniapp转小程序 (1) 运行微信开发工具 &#xff08;2&#xff09; 配置id 然后运行 打开小程序 路径 E:\通\uniapp-jeecg\unpackage\dist\d…

MySQL -- mysql connect

MySQL – mysql connect 文章目录 MySQL -- mysql connect一、Connector/C 使用1.环境安装2.尝试链接mysql client 二、MySQL接口1.初始化2.链接数据库3.下发mysql命令4.获取执行结果5.关闭mysql链接6.在C语言中连接MySQL 三、MySQL图形化界面推荐 使用C接口库来进行连接 一、…

ppt聚光灯效果

1.放入三张图片内容或其他 2.全选复制成图片 3.设置黑色矩形&#xff0c;透明度30% 4.粘贴复制后的图片&#xff0c;制定图层 5.插入椭圆&#xff0c;先选中矩形&#xff0c;再选中椭圆&#xff0c;点击绘图工具&#xff0c;选择相交即可&#xff08;关键&#xff09;

python二维码识别系统的设计与实现

大家好我是玥沐春风&#xff0c;今天分享一个python二维码识别系统的设计与实现&#xff0c;项目源码以及部署相关请联系我&#xff0c;文末附上联系信息 。 项目简介&#xff1a; 本项目是在对二维码的应用服务场景进行了深入的分析&#xff0c;通过利用Python技术来开发一款…

警告:未配置spring boot 配置注解处理器

前言 这是我在这个网站整理的笔记,有错误的地方请指出&#xff0c;关注我&#xff0c;接下来还会持续更新。 作者&#xff1a;神的孩子都在歌唱 问题 我再使用ConfigurationProperties(prefix “redisson”)去加载配置文件中的属性的时候&#xff0c;发现idea有个警告 并且配…

uni-app基于vue实现商城小程序

目录 一、前言 二、功能效果图 1.首页 2.分类 ​3.活动 4.我的 ​5.商品详情 6.购物车 三、代码实现 1.项目结构截图 uni-app&#xff0c;Hbuilder 2.首页源码 3.数据模拟通讯 四、总结 一、前言 参考“网易严选”小程序 项目采用传统vue项目结构&#xff0c;即u…

【123. 买卖股票的最佳时机 III】

目录 一、题目描述二、算法原理三、代码实现 一、题目描述 二、算法原理 三、代码实现 class Solution { public:const int Init-0x3f3f3f3f;int maxProfit(vector<int>& prices) {int nprices.size();vector<vector<int>> f(n,vector<int>(3,Ini…

python开发过程中注意编码规范~

文章目录 一、 代码编排二、 文档编排三、 空格的使用四、 注释五、 文档描述六、 命名规范总体原则&#xff0c;新编代码必须按下面命名风格进行&#xff0c;现有库的编码尽量保持风格。七 编码建议关于Python技术储备一、Python所有方向的学习路线二、Python基础学习视频三、…