学习pytorch15 优化器

优化器

  • 官网
  • 如何构造一个优化器
  • 优化器的step方法
  • code
  • running log
    • 出现下面问题如何做反向优化?

官网

https://pytorch.org/docs/stable/optim.html

在这里插入图片描述
提问:优化器是什么 要优化什么 优化能干什么 优化是为了解决什么问题
优化模型参数

如何构造一个优化器

optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)  # momentum SGD优化算法用到的参数
optimizer = optim.Adam([var1, var2], lr=0.0001)
  1. 选择一个优化器算法,如上 SGD 或者 Adam
  2. 第一个参数 需要传入模型参数
  3. 第二个及后面的参数是优化器算法特定需要的,lr 学习率基本每个优化器算法都会用到

优化器的step方法

会利用模型的梯度,根据梯度每一轮更新参数
optimizer.zero_grad() # 必须做 把上一轮计算的梯度清零,否则模型会有问题

for input, target in dataset:
    optimizer.zero_grad()  # 必须做 把上一轮计算的梯度清零,否则模型会有问题
    output = model(input)
    loss = loss_fn(output, target)
    loss.backward()
    optimizer.step()

or 把模型梯度包装成方法再调用

for input, target in dataset:
    def closure():
        optimizer.zero_grad()
        output = model(input)
        loss = loss_fn(output, target)
        loss.backward()
        return loss
    optimizer.step(closure)

code

import torch
import torchvision
from torch import nn, optim
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

test_set = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor(),
                                        download=True)

dataloader = DataLoader(test_set, batch_size=1)

class MySeq(nn.Module):
    def __init__(self):
        super(MySeq, self).__init__()
        self.model1 = Sequential(Conv2d(3, 32, kernel_size=5, stride=1, padding=2),
                                 MaxPool2d(2),
                                 Conv2d(32, 32, kernel_size=5, stride=1, padding=2),
                                 MaxPool2d(2),
                                 Conv2d(32, 64, kernel_size=5, stride=1, padding=2),
                                 MaxPool2d(2),
                                 Flatten(),
                                 Linear(1024, 64),
                                 Linear(64, 10)
                                 )

    def forward(self, x):
        x = self.model1(x)
        return x

# 定义loss
loss = nn.CrossEntropyLoss()
# 搭建网络
myseq = MySeq()
print(myseq)
# 定义优化器
optmizer = optim.SGD(myseq.parameters(), lr=0.001, momentum=0.9)
for epoch in range(20):
    running_loss = 0.0
    for data in dataloader:
        imgs, targets = data
        # print(imgs.shape)
        output = myseq(imgs)
        optmizer.zero_grad()  # 每轮训练将梯度初始化为0  上一次的梯度对本轮参数优化没有用
        result_loss = loss(output, targets)
        result_loss.backward()  # 优化器需要每个参数的梯度, 所以要在backward() 之后执行
        optmizer.step()  # 根据梯度对每个参数进行调优
        # print(result_loss)
        # print(result_loss.grad)
        # print("ok")
        running_loss += result_loss
    print(running_loss)

running log

loss由小变大最后到nan的解决办法:

  1. 降低学习率
  2. 使用正则化技术
  3. 增加训练数据
  4. 检查网络架构和激活函数

出现下面问题如何做反向优化?

Files already downloaded and verified
MySeq(
  (model1): Sequential(
    (0): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (4): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (6): Flatten(start_dim=1, end_dim=-1)
    (7): Linear(in_features=1024, out_features=64, bias=True)
    (8): Linear(in_features=64, out_features=10, bias=True)
  )
)
tensor(18622.4551, grad_fn=<AddBackward0>)
tensor(16121.4092, grad_fn=<AddBackward0>)
tensor(15442.6416, grad_fn=<AddBackward0>)
tensor(16387.4531, grad_fn=<AddBackward0>)
tensor(18351.6152, grad_fn=<AddBackward0>)
tensor(20915.9785, grad_fn=<AddBackward0>)
tensor(23081.5254, grad_fn=<AddBackward0>)
tensor(24841.8359, grad_fn=<AddBackward0>)
tensor(25401.1602, grad_fn=<AddBackward0>)
tensor(26187.4961, grad_fn=<AddBackward0>)
tensor(28283.8633, grad_fn=<AddBackward0>)
tensor(30156.9316, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)
tensor(nan, grad_fn=<AddBackward0>)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/123853.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

react组件通信

目录 前言&#xff1a; 父子组件通信 子父组件通信 兄弟组件通信 总结 前言&#xff1a; React是一种流行的JavaScript库&#xff0c;用于构建现代化的、高性能的Web应用程序。在React中&#xff0c;组件是代码的构建块。组件通信是React中一个非常重要的概念&#xff0c;…

普洱茶上市?澜沧古茶通过港股聆讯

近日&#xff0c;澜沧古茶成功通过港交所聆讯&#xff0c;随后在11月7日披露了相关资料集。该公司即将在港交所主板上市&#xff0c;此次上市由中信建投国际和招商证券国际担任联席保荐人。据了解&#xff0c;澜沧古茶或将成为内地茶企第一股&#xff0c;也将成为“普洱茶第一股…

YOLOX: Exceeding YOLO Series in 2021(2021.8)

文章目录 AbstractIntroduction介绍前人的工作提出问题解决 YOLOXYOLOX-DarkNet53Implementation detailsYOLOv3 baselineDecoupled headStrong data augmentationAnchor-freeMulti positivesSimOTAEnd-to-end YOLOOther BackbonesModified CSPNet in YOLOv5Tiny and Nano dete…

Vscode Vim自动切换

在VsCode里安装了Vim插件&#xff0c;由于Vim插件存在Normal和Insert两种模式&#xff0c;会需要经常性的按shift切换中英文&#xff0c;太过麻烦&#xff0c;本文介绍一下如何通过im-select来解决。 首先先确保自己的电脑里装有英文语言包&#xff0c;win10系统下可以使用Win…

【小白专用】VSCode下载和安装与配置PHP开发环境(详细版) 23.11.08

1. 下载VSCode2. 解决VSCode下载速度特别慢3. 安装VSCode 一、VSCode介绍 VSCode 是一款由微软开发且跨平台的免费源代码编辑器&#xff1b;该软件支持语法高亮、代码自动补全、代码重构、查看定义功能&#xff0c;并且内置了命令行工具和 Git 版本控制系统。 二、官方下载地址…

qframework 架构 (作者:凉鞋)使用笔记

一些准则&#xff1a; 根据VIEW->SYSTEM->MODEL的分层架构 初始架构&#xff1a; app. using FrameworkDesign;namespace ShootingEditor2D&#xff08;项目的命名空间&#xff09; {public class ShootingEditor2D &#xff08;游戏名称&#xff09;: Architecture&l…

C++常用格式化输出转换

在C语言中可以用printf以一定的格式打印字符&#xff0c;C当然也可以。 输入输出及命名空间还不太了解的小伙伴可以看一看C入门讲解第一篇。  在C中&#xff0c;可以用流操作符&#xff08;stream manipulators&#xff09;控制数据的输出格式&#xff0c;这些流操作符定义在2…

基于SSM的建筑装修图纸管理平台

末尾获取源码 开发语言&#xff1a;Java Java开发工具&#xff1a;JDK1.8 后端框架&#xff1a;SSM 前端&#xff1a;采用JSP技术开发 数据库&#xff1a;MySQL5.7和Navicat管理工具结合 服务器&#xff1a;Tomcat8.5 开发软件&#xff1a;IDEA / Eclipse 是否Maven项目&#x…

Flink—— Data Source 介绍

Data Source 简介 Flink 做为一款流式计算框架&#xff0c;它可用来做批处理&#xff0c;即处理静态的数据集、历史的数据集&#xff1b;也可以用来做流处理&#xff0c;即实时的处理些实时数据流&#xff0c;实时的产生数据流结果&#xff0c;只要数据源源不断的过来&#xff…

福州湾107㎡三室两厅两卫,温柔如风的奶油原木风,自由浪漫的灵魂。福州中宅装饰,福州装修

今天要分享的是一套面积107平米的奶油原木风三室两厅的案例。设计师于业主诉求中抽丝剥茧&#xff0c;汲取灵感&#xff0c;以大热的现代风格为主&#xff0c;暖色为主基调&#xff0c;配合原木肌理和巧思的质感细节装饰&#xff0c;最终打造出一种自由与惬意的空间。 01丨业 主…

React路由与导航

目录 前言&#xff1a; 什么是React路由&#xff1f; 导航和页面切换 路由参数和动态路由 路由守卫和权限控制 总结 前言&#xff1a; React是一个流行的JavaScript库&#xff0c;用于构建用户界面。在使用React开发Web应用程序时&#xff0c;路由和导航是必不可少的功能…

大语言模型研究进展综述

1、历史 自20世纪50年代图灵测试被提出以来&#xff0c;研究人员一直在探索和开发能够理解并掌握语言的人工智能技术。 作为重要的研究方向之一&#xff0c;语言模型得到了学术界的广泛研究&#xff0c;从早期的统计语言模型和神经语言模型开始&#xff0c;发展到基于Transform…

1、Sentinel基本应用限流规则(1)

Sentinel基本应用&限流规则 1.1 概述与作用 随着微服务的流行&#xff0c;服务和服务之间的稳定性变得越来越重要。缓存、降级和限流是保护微服务系统运行稳定性的三大利器。 缓存&#xff1a;提升系统访问速度和增大系统能处理的容量 降级&#xff1a;当服务出问题或者影…

osgEarth之添加shp

目录 效果 代码 代码分析 加载模式 效果 代码 #include "stdafx.h" #include <osg/Notify> #include <osgGA/StateSetManipulator> #include <osgViewer/Viewer> #include <osgViewer/ViewerEventHandlers>#include <osgEarth/MapNo…

IP-guard WebServer 远程命令执行漏洞

IP-guard WebServer 远程命令执行漏洞 免责声明漏洞描述漏洞影响漏洞危害网络测绘Fofa: app="ip-guard"漏洞复现1. 构造poc2. 访问文件3. 执行命令免责声明 仅用于技术交流,目的是向相关安全人员展示漏洞利用方式,以便更好地提高网络安全意识和技术水平。 任何人不得…

高速信号PCB布局怎么布?(电子硬件)

对于高速信号&#xff0c;pcb的设计要求会更多&#xff0c;因为高速信号很容易收到其他外在因素的干扰&#xff0c;导致实际设计出来的东西和原本预期的效果相差很多。 所以在高速信号pcb设计中&#xff0c;需要提前考虑好整体的布局布线&#xff0c;良好的布局可以很好的决定布…

AI:67-基于深度学习的脱机手写汉字识别

🚀 本文选自专栏:AI领域专栏 从基础到实践,深入了解算法、案例和最新趋势。无论你是初学者还是经验丰富的数据科学家,通过案例和项目实践,掌握核心概念和实用技能。每篇案例都包含代码实例,详细讲解供大家学习。 📌📌📌在这个漫长的过程,中途遇到了不少问题,但是…

Django(二、静态文件的配置、链接数据库MySQL)

文章目录 一、静态文件及相关配置1.以登录功能为例2.静态文件3.资源访问4.静态文件资源访问如何解决&#xff1f; 二、静态文件相关配置1. 如何配置静态文件配置&#xff1f;2.接口前缀3. 接口前缀动态匹配4. form表单请求方法补充form表单要注意的点 三、request对象方法reque…

阿里云 :推出通义大模型编码助手产品【通义灵码】

本心、输入输出、结果 文章目录 阿里云 &#xff1a;推出通义大模型编码助手产品【通义灵码】前言通义灵码简介主要功能主要功能点 支持的语言和 IDEjetbrains IDEA 安装计费相关弘扬爱国精神 阿里云 &#xff1a;推出通义大模型编码助手产品【通义灵码】 编辑&#xff1a;简简…

SOLIDWORKS --电磁仿真篇

什么是 SIMULIA? 基于3DEXPERIENCE平台的品牌 多学科多领域的协同仿真与分析优化 三大核心仿真领域 结构仿真 流体仿真 SIMULIA电磁仿真是什么? 完备的求解技术&#xff0c;支持从静场、低频到高频、光波的电磁仿真&#xff0c;支持全波仿真、混合仿真、多物理场仿真和场路…