一、霸王龙优化算法
霸王龙优化算法(Tyrannosaurus optimization,TROA)由Venkata Satya Durga Manohar Sahu等人于2023年提出,该算法模拟霸王龙的狩猎行为,具有搜索速度快等优势。
参考文献:
[1]Venkata Satya Durga Manohar Sahu, Padarbinda Samal, Chinmoy Kumar Panigrahi,”Tyrannosaurus optimization algorithm: A new nature-inspired meta-heuristic algorithm for solving optimal control problems”,e-Prime - Advances in Electrical Engineering, Electronics and Energy,Volume 5,2023,100243,ISSN 2772-6711,https://doi.org/10.1016/j.prime.2023.100243.
二、多目标霸王龙优化算法MOTROA
多目标霸王龙优化算法(Multi-Objective Tyrannosaurus optimization,MOTROA)由霸王龙优化算法融合多目标策略而成。将MOTROA用于求解46个多目标测试函数(ZDT1、ZDT2、ZDT3、ZDT4、ZDT6、DTLZ1-DTLZ7、WFG1-WFG10、UF1-UF10、CF1-CF10、Kursawe、Poloni、Viennet2、Viennet3)以及1个工程应用(盘式制动器设计),并采用IGD、GD、HV、SP进行评价。
(1)部分代码
close all; clear ; clc; %% % TestProblem测试问题说明: %一共46个多目标测试函数(1-46)+1个工程应用(47),详情如下: %1-5:ZDT1、ZDT2、ZDT3、ZDT4、ZDT6 %6-12:DTLZ1-DTLZ7 %13-22:wfg1-wfg10 %23-32:uf1-uf10 %33-42:cf1-cf10 %43-46:Kursawe、Poloni、Viennet2、Viennet3 %47 盘式制动器设计 https://blog.csdn.net/weixin_46204734/article/details/124051747 %% TestProblem=3;%1-47 MultiObj = GetFunInfo(TestProblem); MultiObjFnc=MultiObj.name;%问题名 % Parameters params.Np = 100; % 种群大小 params.Nr = 300; % 外部存档中最大数目,可适当调整大小,越大,最终获得的解数目越多 (特别注意:params.Nr 不得小于params.Np) params.maxgen =300; % 最大迭代次数 REP = MOTROA(params,MultiObj); %% 画结果图 figure if(size(REP.pos_fit,2)==2) h_rep = plot(REP.pos_fit(:,1),REP.pos_fit(:,2),'ok'); hold on; if(isfield(MultiObj,'truePF')) h_pf = plot(MultiObj.truePF(:,1),MultiObj.truePF(:,2),'.r'); hold on; legend('MOTROA','TruePF'); else legend('MOTROA'); end grid on; xlabel('f1'); ylabel('f2'); end if(size(REP.pos_fit,2)==3) h_rep = plot3(REP.pos_fit(:,1),REP.pos_fit(:,2),REP.pos_fit(:,3),'ok'); hold on; if(isfield(MultiObj,'truePF')) h_pf = plot3(MultiObj.truePF(:,1),MultiObj.truePF(:,2),MultiObj.truePF(:,3),'.r'); hold on; legend('MOTROA','TruePF'); else legend('MOTROA'); end grid on; xlabel('f1'); ylabel('f2'); zlabel('f3'); end title(MultiObjFnc) %% 求解结果 bestX bestF bestX=REP.pos;%POX bestF=REP.pos_fit;%POF save([MultiObjFnc '-bestX.txt'],'bestX','-ascii') save([MultiObjFnc '-bestF.txt'],'bestF','-ascii') %% 计算评价指标IGD、GD、HV、Spacing Obtained_Pareto=REP.pos_fit; if(isfield(MultiObj,'truePF'))%判断是否有参考的PF True_Pareto=MultiObj.truePF; %% Metric Value % ResultData的值分别是IGD、GD、HV、Spacing (HV越大越好,其他指标越小越好) ResultData=[IGD(Obtained_Pareto,True_Pareto),GD(Obtained_Pareto,True_Pareto),HV(Obtained_Pareto,True_Pareto),Spacing(Obtained_Pareto)]; else %计算每个算法的Spacing,Spacing越小说明解集分布越均匀 ResultData=Spacing(Obtained_Pareto);%计算的Spacing end save([MultiObjFnc '-MetricValue.txt'],'ResultData','-ascii')%保存评价指标的值 %% % Display info disp('Repository fitness values are stored in bestF'); disp('Repository particles positions are store in bestX');