go-sync-mutex

Sync

​ Go 语言作为一个原生支持用户态进程(Goroutine)的语言,当提到并发编程、多线程编程时,往往都离不开锁这一概念。锁是一种并发编程中的同步原语(Synchronization Primitives),它能保证多个 Goroutine 在访问同一片内存时不会出现竞争条件(Race condition)等问题。

通过atomic.CompareAndSwapInt32调用汇编CAS(compare and swap)指令的原子性来实现临界区的互斥访问,保证只有一个协程获取到锁

​ 当其中一个 goroutine 获得了这个锁,其他 goroutine 尝试获取这个锁时将会被阻塞,直到持有锁的 goroutine 释放锁为止。

​ Go 语言在 sync 包中提供了用于同步的一些基本原语,包括常见的 sync.Mutexsync.RWMutexsync.WaitGroupsync.Oncesync.Cond

!Mutex互斥锁

​ Go 语言的 sync.Mutex 由两个字段 statesema 组成。其中 state 表示当前互斥锁的状态,而 sema 是用于控制锁状态的信号量。

type Mutex struct {
    state int32
    sema uint32		// 指针地址 0xF,存着结构体的地址
}

Mutex.state

状态字段

int32类型的state代表:

  • locked: 锁状态 1被锁 0未被锁

  • woken:1是否有goroutine模式被唤醒,0未被唤醒

  • starving:1进入饥饿模式,0正常模式

  • 其他位:代表获取锁的等待队列中的协程数,state是int32类型,说明是32bit,其余位是32-3 bits,所以最大排队协程数就是2^(32-3)

锁模式

  • 正常模式:队头和新协程的抢占,未抢占到的扔到队尾
  • 饥饿模式:按顺序获取锁,不得插队,防止队尾一直阻塞等待
正常模式

在正常模式下获取锁:

  1. 多线程下竞争锁,获取成功返回,修改sync.Mutex结构体字段。获取失败,自旋等待其他线程释放锁,4次之后仍然拿不到锁,goroutine加入到等待队列尾部,状态改成_GWaiting
  2. 获取到锁的线程释放锁,从等待队列头部唤醒一个Goroutine,状态改成_Grunning,他会和新创建并且获取锁的新goroutine(M正在运行的g_Grunning)争抢锁。
    1. 如果被唤醒的G仍然未能抢到锁,goroutine加入到等待队列头部,状态改成_GWaiting
    2. 如果被唤醒的G抢到锁,新创建的G相当于重新进入1步骤
饥饿模式

在饥饿模式下获取锁:

互斥锁会直接交给等待队列最前面的 Goroutine。新的 Goroutine 在该状态下不能获取锁、也不会进入自旋状态,它们只会在队列的末尾等待。如果一个 Goroutine 获得了互斥锁并且它在队列的末尾或者它等待的时间少于 1ms,那么当前的互斥锁就会切换回正常模式。

锁模型切换
  • 正常模式切换到饥饿模式:被唤醒的 Goroutine 超过 1ms 没有获取到锁,它就会将当前互斥锁切换饥饿模式,防止部分 Goroutine 被『饿死』。
  • 饥饿模式换到正常模式切:
    • 一个 Goroutine 获得了互斥锁并且它在队列的末尾,说明没有协程在竞争了,切换到正常模式
    • 被唤醒的 Goroutine 获得锁没超过 1ms ,切换到正常模式

Mutex.Sema

控制锁状态的信号量(互斥信号量)

// runtime/sema.go
type semaRoot struct {
	lock  mutex
	treap *sudog // 锁抢占者的 平衡树的根
	nwait uint32 // 抢占锁的goroutine的数量
}

互斥锁加锁/解锁

  • func (m *Mutex) Lock():Lock方法锁住m,如果m已经加锁,则阻塞直到m解锁。
func (m *Mutex) Lock() {
	// 未锁状态,获取锁return
	if atomic.CompareAndSwapInt32(&m.state, 0, mutexLocked) {
		if race.Enabled {
			race.Acquire(unsafe.Pointer(m))
		}
		return
	}
	// Slow path (outlined so that the fast path can be inlined)
	m.lockSlow()
}

func (m *Mutex) lockSlow() {
	var waitStartTime int64	// 协程抢占锁时间,时间超出,锁变成饥饿模式
	starving := false
	awoke := false
	iter := 0
	old := m.state
	for {
		// 锁住状态下 and 不是饥模式 and 在可自旋次数下 进入
		if old&(mutexLocked|mutexStarving) == mutexLocked && runtime_canSpin(iter) {
			// awoke标记是false and 锁非唤醒状态 and 锁的等待者大于0  
            // 满足这些条件,把锁变成唤醒状态
            // awoke flag标记成true
			if !awoke && old&mutexWoken == 0 && old>>mutexWaiterShift != 0 &&
				atomic.CompareAndSwapInt32(&m.state, old, old|mutexWoken) {
				awoke = true
			}
            // 自旋 汇编
			runtime_doSpin()
            // 累计自选次数
			iter++
            
            // 把唤醒状态 覆盖 old
			old = m.state
           
			continue
		}
        
        // 可能其他协程更改了锁状态:改成了`未锁住状态` 
        // 以下操作就有AB两种情况
        // A情况: 锁住状态 且 饥饿模式 (自旋次数超过4次)
        // B情况: 未锁住
        
        //拿到最新锁状态
		new := old

		// old不是饥饿模式(排除A情况),那是B情况,把new设置成锁状态
		if old&mutexStarving == 0 {
			new |= mutexLocked
		}
        
        // old 是 锁住状态 或 是饥饿模式。
        // 等待数+1 (当前协程加入等待)
		if old&(mutexLocked|mutexStarving) != 0 {
			new += 1 << mutexWaiterShift
		}
        
        // 饥饿标识非空 and old是锁住状态。 (第一次进入 且 A情况)
        // new设置成饥饿状态
		if starving && old&mutexLocked != 0 {
			new |= mutexStarving
		}
        
        // awoke标识是 唤醒状态
		if awoke {
			// new不是唤醒状态,锁标识不对,panic
			if new&mutexWoken == 0 {
				throw("sync: inconsistent mutex state")
			}
            // &^ 想异的位保留,相同的位清0。 非唤醒状态 变成 唤醒, 唤醒状态下变成非唤醒
			new &^= mutexWoken
		}
        
        // 此时new的3个字段状态 : 锁住,饥饿,唤醒状态未知
        // 如果状态没有被其他协程改变,状态更改成new
		if atomic.CompareAndSwapInt32(&m.state, old, new) {
            // 如果状态是非锁住 and 非饥饿模式 
            // compareAndSwapInt32已经改成锁住,break for
			if old&(mutexLocked|mutexStarving) == 0 {
				break // locked the mutex with CAS
			}
			
            // 设置排队者的开始等待时间
			queueLifo := waitStartTime != 0
			if waitStartTime == 0 {
				waitStartTime = runtime_nanotime()
			}
            
            // 信号量设置,阻塞等待(信号量的P操作,协程间通信)
			runtime_SemacquireMutex(&m.sema, queueLifo, 1)
            
            // 标记 饥饿标识, 如果是饥饿标识是true 或者 大于饥饿阈值 
			starving = starving || runtime_nanotime()-waitStartTime > starvationThresholdNs
            
            // 获取最新锁状态,虽然前面compareAndSwap已经改成了m.state : 锁住,饥饿,唤醒状态未知。但是前面阻塞有可能其他协程更改了状态
			old = m.state
            
            // 锁是饥饿模式
			if old&mutexStarving != 0 {
				
                // 锁是 锁住状态 或者 唤醒状态 或者 等待者为0个时
                // 抛出
				if old&(mutexLocked|mutexWoken) != 0 || old>>mutexWaiterShift == 0 {
					throw("sync: inconsistent mutex state")
				}
                
                // 
				delta := int32(mutexLocked - 1<<mutexWaiterShift)
                
                // 非贪婪模式 或则 等待者为1时
				if !starving || old>>mutexWaiterShift == 1 {
					delta -= mutexStarving
				}
				atomic.AddInt32(&m.state, delta)
				break
			}
			awoke = true
			iter = 0
		} else {
			old = m.state
		}
	}

	if race.Enabled {
		race.Acquire(unsafe.Pointer(m))
	}
}
  • func (m *Mutex) Unlock():Unlock方法解锁m,如果m未加锁会导致运行时错误。锁和线程无关,可以由不同的线程加锁和解锁。
func (m *Mutex) Unlock() {
	if race.Enabled {
		_ = m.state
		race.Release(unsafe.Pointer(m))
	}

	// Fast path: drop lock bit.
	new := atomic.AddInt32(&m.state, -mutexLocked)
	if new != 0 {
		// Outlined slow path to allow inlining the fast path.
		// To hide unlockSlow during tracing we skip one extra frame when tracing GoUnblock.
		m.unlockSlow(new)
	}
}

func (m *Mutex) unlockSlow(new int32) {
	if (new+mutexLocked)&mutexLocked == 0 {
		throw("sync: unlock of unlocked mutex")
	}
	if new&mutexStarving == 0 {
		old := new
		for {
			if old>>mutexWaiterShift == 0 || old&(mutexLocked|mutexWoken|mutexStarving) != 0 {
				return
			}
			// Grab the right to wake someone.
			new = (old - 1<<mutexWaiterShift) | mutexWoken
			if atomic.CompareAndSwapInt32(&m.state, old, new) {
				runtime_Semrelease(&m.sema, false, 1)
				return
			}
			old = m.state
		}
	} else {
		// 信号量中的V操作
		runtime_Semrelease(&m.sema, true, 1)
	}
}

信号量:信号量有两种原子操作,他们必须成对出现
P操作:信号量 减1,当信号量 <0 ,表明资源被占用,进程阻塞。 当信号量>=0,表明资源被释放(可用),进程可继续执行
V操作:信号量加1,当信号量<=0时,代表有阻塞中进程。当信号量>0,表明没有阻塞中进程,无需操作
互斥信号量,默认值为1
————————————————
版权声明:本文为CSDN博主「我是你的小阿磊」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qiu18610714529/article/details/109062176

example

import "sync"

func main() {

	m := sync.Mutex{}
	go user1(&m)
	go user2(&m)

	signalChan := make(chan os.Signal, 1)
	signal.Notify(signalChan, os.Interrupt)
	select {
	case <-signalChan:
		fmt.Println("catch interrupt signal")
		break
	}
}

func printer(str string, m *sync.Mutex) {
	m.Lock()         //加锁
	defer m.Unlock() //解锁
	for _, ch := range str {
		fmt.Printf("%c", ch)
		time.Sleep(time.Millisecond * 1)
	}
}
func user1(m *sync.Mutex) {
	printer("hello ", m)
}
func user2(m *sync.Mutex) {
	printer("world", m)
}

//打印结果
worldhello 或者 helloworld: 两个单词是有序的,不像`heworllldo`两个协程同时打印,说明某个协程会在mutex.Lock()进行自旋等待获取锁

RWMutex读写互斥锁

读写互斥锁 sync.RWMutex 是细粒度的互斥锁,它不限制资源的并发读,但是读写、写写操作无法并行执行。

type RWMutex struct {
	w           Mutex  // held if there are pending writers
	writerSem   uint32 // semaphore for writers to wait for completing readers
	readerSem   uint32 // semaphore for readers to wait for completing writers
	readerCount int32  // number of pending readers
	readerWait  int32  // number of departing readers
}
  • w — 复用互斥锁提供的能力;
  • writerSemreaderSem — 分别用于写等待读和读等待写:
  • readerCount 存储了当前正在执行的读操作数量;
  • readerWait 表示当写操作被阻塞时等待的读操作个数;

加锁/解锁

  • func (rw *RWMutex) RLock() :读加锁,如果有写锁,则阻塞等待

    func (rw *RWMutex) RLock() {
    	if race.Enabled {
    		_ = rw.w.state
    		race.Disable()
    	}
    	if atomic.AddInt32(&rw.readerCount, 1) < 0 {
    		// 阻塞,等待信号量的v操作释放共享内存,才能获得执行权
    		runtime_SemacquireMutex(&rw.readerSem, false, 0)
    	}
    	if race.Enabled {
    		race.Enable()
    		race.Acquire(unsafe.Pointer(&rw.readerSem))
    	}
    }
    
  • func (rw *RWMutex) RUnlock():解读锁,

    func (rw *RWMutex) RUnlock() {
    	if race.Enabled {
    		_ = rw.w.state
    		race.ReleaseMerge(unsafe.Pointer(&rw.writerSem))
    		race.Disable()
    	}
    	if r := atomic.AddInt32(&rw.readerCount, -1); r < 0 {
    		// Outlined slow-path to allow the fast-path to be inlined
    		rw.rUnlockSlow(r)
    	}
    	if race.Enabled {
    		race.Enable()
    	}
    }
    
    func (rw *RWMutex) rUnlockSlow(r int32) {
    	if r+1 == 0 || r+1 == -rwmutexMaxReaders {
    		race.Enable()
    		throw("sync: RUnlock of unlocked RWMutex")
    	}
    	// A writer is pending.
    	if atomic.AddInt32(&rw.readerWait, -1) == 0 {
    		// The last reader unblocks the writer.
    		runtime_Semrelease(&rw.writerSem, false, 1)
    	}
    }
    
  • func (rw *RWMutex) Lock(): 写锁,如果有读写锁被占用,阻塞等待所有读写锁释放后才能获得

    • 其他 Goroutine 在获取写锁时会进入自旋或者休眠
    • 有其他 Goroutine 持有互斥锁的读锁该 Goroutine 会调用 runtime.sync_runtime_SemacquireMutex 进入休眠状态等待所有读锁所有者执行结束后释放 writerSem 信号量将当前协程唤醒;
func (rw *RWMutex) Lock() {
	if race.Enabled {
		_ = rw.w.state
		race.Disable()
	}
	// First, resolve competition with other writers.
	rw.w.Lock()
	// Announce to readers there is a pending writer.
	r := atomic.AddInt32(&rw.readerCount, -rwmutexMaxReaders) + rwmutexMaxReaders
	// Wait for active readers.
	if r != 0 && atomic.AddInt32(&rw.readerWait, r) != 0 {
		runtime_SemacquireMutex(&rw.writerSem, false, 0)
	}
	if race.Enabled {
		race.Enable()
		race.Acquire(unsafe.Pointer(&rw.readerSem))
		race.Acquire(unsafe.Pointer(&rw.writerSem))
	}
}

example

func RMutex() {
	ch := make(chan struct{})
	rw := &sync.RWMutex{}
	go func() {
		rw.RLock()
		time.Sleep(time.Second * 5)
		defer rw.RUnlock()
		fmt.Println("fun1")
	}()

	go func() {
		time.Sleep(time.Millisecond * 500)
		rw.Lock()
		defer rw.Unlock()
		fmt.Println("fun2")
		close(ch)
	}()

	<-ch
}

// 先打印出fun1 再打印fun2 代表了读写互斥

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/123501.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Django之三板斧的使用,全局配置文件介绍,request对象方法,pycharm链接数据库,Django链接数据库,ORM的增删改查

【1】三板斧(3个方法)的使用 Httpresponse() 括号内写什么字符串&#xff0c;返回的就是什么字符串返回的是字符串 render(request&#xff0c; 静态文件 ) request是固定的静态文件是写在templates文件夹里面的&#xff0c;如&#xff0c;HTML文件 redirect( 重定向的地址 ) 重…

利用三次样条插值调整鱼眼扭曲程度

本文利用三次样条插值算法&#xff0c;改变鱼眼扭曲程度。效果如下图所示&#xff1a; 源码下载地址&#xff1a;利用三次样条插值算法更改鱼眼特效的扭曲程度资源-CSDN文库 &#xff08;说明&#xff1a;源码基于QT和opencv &#xff09; 主要代码 鱼眼扭曲 void fisheye(…

在Windows 10上安装单机版的hadoop-3.3.5

1、Hadoop是一个由Apache基金会所开发的分布式系统基础架构。用户可以不需要了解分布式底层细节的情况下&#xff0c;开发分布式程序。充分利用集群进行高速运算和存储。 2、下载Hadoop&#xff0c;我们在清华大学的镜像站下载 Index of /apache/hadoop/core/hadoop-3.3.6 (t…

Django文件配置、request对象、连接MySQL、ORM

文章目录 Django静态文件及相关配置静态文件前言静态文件相关配置 form表单request对象request请求结果GET请求POST请求 pycharm连接数据库Django连接MySQLDjango ORM简介 Django静态文件及相关配置 在此篇博客我将以一个用户登录页面来引入相关知识 首先我们先编写一个html页面…

一种libuv实现websockets服务的解决方案

方法是libuv用多事件循环来驱动。说起来容易&#xff0c;做起来还是比下面的方法更容易&#xff1a; 上图是某位网友的方法代表子大部分网络资料。此方法对部署不友好&#xff0c;因为软件仓库提供的libwebsockets是不能用了。如何简化部署&#xff0c;利用好现有的软件仓库呢&…

vue开发环境搭建部署(mac版)

前言 目前后端工作越来越少了&#xff0c;年底了&#xff0c;为了先过验收。项目负责人、产品、需求制定的方案就是先做假页面&#xff0c;所以前端的活多点。 其实现在不喜欢搞前端&#xff0c;原因很多&#xff0c;但是感觉现在似乎流行的码林绝学又是九九归一的瓶颈期…

【Kurbernetes资源管理】声明式资源管理+配置清单文件详解(附实例)

声明式 一、声明式资源管理方式1.1 简介1.2 基本语法1.3 子命令详解1.3.1 获取资源配置清单1.3.2 创建/更新资源补充&#xff1a;creat和apply的区别 1.3.3 删除资源----- delete1.3.4 编辑资源配置 -----edit1.3.5 获取资源的解释-----explain 二、资源清单格式详解2.1 yaml语…

Flutter 第三方 flutter_screenutil(屏幕适配)

一直觉得自己写的不是技术&#xff0c;而是情怀&#xff0c;一个个的教程是自己这一路走来的痕迹。靠专业技能的成功是最具可复制性的&#xff0c;希望我的这条路能让你们少走弯路&#xff0c;希望我能帮你们抹去知识的蒙尘&#xff0c;希望我能帮你们理清知识的脉络&#xff0…

Git的基本使用

目录 一.Git的简介 1.1 Git与SVN的区别&#xff08;优势与劣势&#xff09; 1.2 Git的工作流程 二.Git的安装及常用命令 2.1 使用前准备 ​编辑 ​编辑 2.2 在Windows中安装Git 官网链接 Git - Downloadshttps://git-scm.com/downloads 2.3 Git的常用命令 三、Git命令…

人工智能-卷积神经网络之多输入多输出通道

多输入多输出通道 每个图像的多个通道和多层卷积层。例如彩色图像具有标准的RGB通道来代表红、绿和蓝。 但是到目前为止&#xff0c;我们仅展示了单个输入和单个输出通道的简化例子。 这使得我们可以将输入、卷积核和输出看作二维张量。 当我们添加通道时&#xff0c;我们的输…

基于SpringBoot+Redis的前后端分离外卖项目-苍穹外卖(二)

新增员工功能开发 1. 新增员工1.1 需求分析和设计1.1.1 产品原型1.1.2 接口设计1.1.3 表设计 1.2 代码开发1.2.1 设计DTO类1.2.2 Controller层1.2.3 Service层接口1.2.4 Service层实现类1.2.5 Mapper层 1.3 功能测试1.3.1 接口文档测试 1.4 代码完善1.4.1 问题一1.4.2 问题二1.…

H5网页漫画小说苹果cms模板源码/支持对接公众号/支持三级分销

H5网页漫画小说苹果cms模板源码&#xff0c;支持对接公众号、支持三级分销&#xff0c;评论、收藏、历史记录、三级分销。 独有的模板搜索功能&#xff0c;微信、qq防红&#xff0c;站外采集接口、记录阅读章节&#xff0c;SEO优化&#xff08;后台配置&#xff09;&#xff0…

16.字符连接

#include<stdio.h> #include <cstring> int main(){char s1[44];char s2[33];scanf("%s",s1);scanf("%s",s2);strcat(s1,s2) ;printf("连接两个字符为&#xff1a;%s ",s1); return 0;}

Java数据的基本(原始)类型和引用类型的特点差别

本文作为“Java数据类型”一文的补充https://blog.csdn.net/cnds123/article/details/110517272 Java的数据类型可以分为基本类型&#xff08;primitive types&#xff09;和引用类型&#xff08;reference types&#xff09;两大类。在实际编程中&#xff0c;要根据需求选择合…

MySQL json相关函数详解

MySQL提供了一系列的JSON函数&#xff0c;用于解析、提取、修改和操作JSON数据。以下是一些常用的JSON函数及其功能。 以下所有操作都使用该表&#xff08;zone_test&#xff09;用来演示&#xff1a; 一&#xff1a;JSON_OBJECT(key1,value1,key2,value2) 1、作用&#xff1a;…

​软考-高级-系统架构设计师教程(清华第2版)【第1章-绪论-思维导图】​

软考-高级-系统架构设计师教程&#xff08;清华第2版&#xff09;【第1章-绪论-思维导图】 课本里章节里所有蓝色字体的思维导图

Read Completion Boundary (RCB)切分规则

Read Completion Boundary(RCB) 切分规则 Read Completion Boundary(RCB) 简介 当Read Completion 包含multi-completions时&#xff0c;RCB 规定了多个Completions地址的align规则。Spec中规定RCB可以是64 Byte或者128 Byte&#xff0c;该值可以在link_control register中得…

Unity随笔:C#运行时

Unity是如何编译运行C#的 &#xff08;1&#xff09;Unity会通过编译器将C#脚本编译成IL指令。 Unity会通过Roslyn来对C#代码进行编译&#xff0c;生成中间IL指令集。 当我们每次修改或者添加新的C#代码文件&#xff0c;Unity界面的右下角会出现短暂的“转圈”现象。这就意味…

PTE-RA总结

目录 FIBW刷题记录 1.The Plains Indians were people who did not like 2.An economic depression is a period of sustained 3.Pidgins are languages that are born after contact between 4.It is tempting to try to prove that good looks 5.The stock of Austral…

chrome安装vue devtools

不能访问应用商店 如果可以访问应用商店可以往下看 插件源代码 选择shell-chrome&#xff0c;这是官方的插件源码 下载源代码打包 参考教程 点击扩展按钮->管理扩展程序->打开开发者模式->把crx文件拖拽进去即可 可以访问chrome应用商店 插件地址 官方文档地址 选…