基于斑马算法的无人机航迹规划-附代码

基于斑马算法的无人机航迹规划

文章目录

  • 基于斑马算法的无人机航迹规划
    • 1.斑马搜索算法
    • 2.无人机飞行环境建模
    • 3.无人机航迹规划建模
    • 4.实验结果
      • 4.1地图创建
      • 4.2 航迹规划
    • 5.参考文献
    • 6.Matlab代码

摘要:本文主要介绍利用斑马算法来优化无人机航迹规划。

1.斑马搜索算法

斑马算法原理请参考:https://blog.csdn.net/u011835903/article/details/130565746

2.无人机飞行环境建模

? 环境模型的建立是考验无人机是否可以圆满完成人类所赋予各项任务的基
础和前提,其中第一步便是如何描述规划空间中的障碍物。首先我们将采取函数模拟法模拟地貌特征。其函数表达式为:
z ( x , y ) = s i n ( y + a ) + b s i n ( x ) + c c o s ( d y 2 + x 2 ) + e c o s ( y ) + f s i n ( f y 2 + x 2 ) + g c o s ( y ) (1) z(x,y)=sin(y+a)+bsin(x)+ccos(d\sqrt{y^2+x^2})+ecos(y)+fsin(f\sqrt{y^2+x^2})+gcos(y)\tag{1} z(x,y)=sin(y+a)+bsin(x)+ccos(dy2+x2 )+ecos(y)+fsin(fy2+x2 )+gcos(y)(1)
其中, ( x , y ) (x, y) (x,y) 为地形上某点投影在水平面上的点坐标, z z z 则为对应点坐标的高度。式中 a , b , c , d , e , f , g a, b, c, d, e, f , g a,b,c,d,e,f,g 是常系数,想要得到不同的地貌特征可以通过改变其常系数的大小,以上建模是作为环境模型的基准地形信息。但为了得到障碍区域我们还需要在这个基准地形上叠加山峰模型,这样就可以模拟像山峰、丘陵等障碍地理信息。山峰模型的数学表达式为:
h ( x , y ) = ∑ i h i e x p [ − ( x − x o i ) 2 a i 2 − ( y − y o i ) 2 b i 2 ] + h o (2) h(x,y)=\sum_ih_iexp[-\frac{(x-x_{oi})^2}{a_i^2}-\frac{(y-y_{oi})^2}{b_i^2}]+h_o \tag{2} h(x,y)=ihiexp[ai2(xxoi)2bi2(yyoi)2]+ho(2)
式 (2)中, h o h_o ho h i h_i hi 分别表示基准地形和第 i i i座山峰的高度, ( x o i , y o i ) (xoi , y oi ) (xoi,yoi)则表示第 i座山峰的中心坐标位置,a i 和 b i 分别是第 i 座山峰沿 x 轴和 y 轴方向的坡度。由式(1)和(2),我们可以得到如下表达式:
Z ( x , y ) = m a x [ z ( x , y ) , h ( x , y ) ] (3) Z(x,y)=max[z(x,y),h(x,y)]\tag{3} Z(x,y)=max[z(x,y),h(x,y)](3)
无人机在躲避障碍物的同时也会经常遇到具有威胁飞行安全的区域,我们称之为威胁区域。这些威胁区域可以是敌人的雷达和防空导弹系统的探测威胁区域也可以是一些其它的威胁,一旦无人机进入这些区域很有可能会被击落或者坠毁。为了简化模型,本文采用半径为 r 的圆柱形区域表示威胁区域,其半径的大小决定威胁区域的覆盖范围。每一个圆柱体的中心位置是对无人机构成最大威胁的地方并向外依次减弱。

3.无人机航迹规划建模

? 在环境建模的基础上,无人机航迹规划需要考虑到在执行复杂任务的过程中自身性能约束要求,合理的设计航迹评价函数才能使得斑马搜索算法得出的最后结果符合要求,并保证规划出的航迹是有效的。考虑到实际环境中,无人机需要不断适应变化的环境。所以在无人机路径规划过程中,最优路径会显得比较复杂,并包含许多不同的特征。基于实际的情况,本文采用较为复杂的航迹评价函数进行无人机路径规划。影响无人机性能的指标主要包括航迹长度、飞行高度、最小步长、转角代价、最大爬升角等。

? 搜索最佳路径通常与搜索最短路径是密不可分的。在无人机航迹规划过程中,航迹的长度对于大多数航迹规划任务来说也是非常重要的。众所周知,较短的路线可以节省更多的燃料和更多的时间并且发现未知威胁的几率会更低。我们一般把路径定义为无人机从起始点到终点所飞行路程的值,设一条完整的航线有 n n n个节点,其中第 i i i个航路点和第 i + 1 i+1 i+1个航路点之间的距离表示为 l i l_i li ,这两个航路点的坐标分别表示为 ( x i , y i , z i ) (x_i,y_i,z_i ) (xi,yi,zi) ( x i + 1 , y i + 1 , z i + 1 ) (x_{i+1}, y_{i+1},z_{i+1}) (xi+1,yi+1,zi+1)并分别记作 g ( i ) g(i) g(i) g ( i + 1 ) g(i+1) g(i+1)。航迹需要满足如下条件:
{ l i = ∣ ∣ g ( i + 1 ) − g ( i ) ∣ ∣ 2 L p a t h = ∑ i = 1 n − 1 l i (4) \begin{cases} l_i = ||g(i+1)-g(i)||_2\\ L_{path}=\sum_{i=1}^{n-1}l_i \end{cases}\tag{4} {li=∣∣g(i+1)g(i)2Lpath=i=1n1li(4)
在飞行的过程中会遇到障碍物或者进入威胁区域,如果无人机无法躲避障碍物或者飞入了威胁区域将面临被击落或坠毁的危险以至于无法到达终点,记为 L p a t h = ∞ L_{path}=\infty Lpath=,但是无穷函数在实际问题中很难表示,我们采用惩罚的方式进行处理。一般情况下,为了利用地形覆盖自身位置,无人机应尽可能降低高度这可以帮助自身避免一些未知雷达等威胁。但是太低的飞行高度同样会加大无人机同山体和地面的撞击几率,因此设定稳定的飞行高度是非常重要的。飞行高度不应该有太大的变化,稳定的飞行高度可以减少控制系统的负担,节省更多的燃料 。为了使无人机飞行更加安全,给出的飞行高度模型:
{ h h e i g h t = 1 n ∑ i = 0 n − 1 ( z ( i ) − z ‾ ) 2 z ‾ = 1 n ∑ i = 0 n − 1 z ( i ) (5) \begin{cases} h_{height}=\sqrt{\frac{1}{n}\sum_{i=0}^{n-1}(z(i)-\overline{z})^2}\\ \overline{z}=\frac{1}{n}\sum_{i=0}^{n-1}z(i) \end{cases}\tag{5} {hheight=n1i=0n1(z(i)z)2 z=n1i=0n1z(i)(5)
无人机的可操作性也受到其转角代价函数的限制。,在飞行过程中无人机的转角应不大于其预先设定的最大转角,转角的大小会影响其飞行的稳定性。本文的研究中,设定最大转角为 Φ Φ Φ,当前转角为 θ \theta θ并且 a i a_i ai是第 i i i段航路段向量。
{ c o s θ = a i T a i + 1 ∣ a i ∣ ∣ a i + 1 ∣ J t u r n = ∑ i = 1 n ( c o s ( Φ − c o s θ ) ) (6) \begin{cases} cos\theta =\frac{a_i^Ta_{i+1}}{|a_i||a_{i+1}|}\\ J_{turn}=\sum_{i=1}^n(cos(\Phi-cos\theta)) \end{cases}\tag{6} {cosθ=ai∣∣ai+1aiTai+1Jturn=i=1n(cos(Φcosθ))(6)
其中, ∣ a ∣ |a| a代表矢量 a a a的长度。

? 通过对以上三个方面建立了无人机航迹规划的代价函数,可以得出本文的航迹评价函数如下:
J c o s t = w 1 L p a t h + w 2 h h e i g h t + w 3 J t u r n (7) J_{cost}=w_1L_{path}+w_2h_{height}+w_3J_{turn} \tag{7} Jcost=w1Lpath+w2hheight+w3Jturn(7)
其中, J c o s t J_{cost} Jcost是总的代价函数,参数 w i w_i wi i = 1 , 2 , 3 i=1,2,3 i=1,2,3 表示每个代价函数的权值,且满足如下条件:
{ w i ≥ 0 ∑ i = 1 3 w i = 1 (8) \begin{cases} w_i\geq0 \\ \sum_{i=1}^3 w_i=1 \end{cases} \tag{8} {wi0i=13wi=1(8)
通过对总的代价函数进行有效地处理,我们可以得到由线段组成的航迹。不可否认的是得到的路径往往是仅在理论上可行,但为了实际可飞,有必要对航迹进行平滑处理。本文采用三次样条插值的方法对路径进行平滑。

4.实验结果

4.1地图创建

设置地图参数a, b, c, d, e, f , g=1。地图大小为:200*200。设置三个山峰,山峰信息如表1所示。威胁区域信息如表2所示

表1:山峰信息
信息山峰中心坐标山峰高度山峰X方向坡度山峰y方向坡度
山峰1[60,60]502020
山峰2[100,100]603030
山峰3[150,150]802020
表2 威胁区域信息
信息威胁区域中心坐标威胁区域半径
威胁区域1[150,50]30
威胁区域2[50,150]20

创建的地图如下:

在这里插入图片描述

4.2 航迹规划

设置起点坐标为[0,0,20],终点坐标为[200,200,20]。利用斑马算法对航迹评价函数式(7)进行优化。优化结果如下:

在这里插入图片描述
在这里插入图片描述

从结果来看,斑马算法规划出了一条比较好的路径,表明算法具有一定的优势。

5.参考文献

[1]薛建凯. 一种新型的群智能优化技术的研究与应用[D].东华大学,2020.DOI:10.27012/d.cnki.gdhuu.2020.000178.

6.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/123450.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

内网可达网段探测netspy- Mac环境

netspy是一款快速探测内网可达网段工具 当我们进入内网后想要扩大战果,那我们可能首先想知道当前主机能通哪些内网段。 netspy正是一款应用而生的小工具,体积较小,速度极快,支持跨平台,支持多种协议探测,…

软件测试/校招推荐丨鼎捷软件股份有限公司岗位开放

点此获取更多相关资料 软件测试工程师 岗位职责 负责公司产品的日常测试工作;依据软件需求和非功能需求,编写测试方案和测试用例,设计测试脚本;负责服务器系统和软件的日常维护工作,为上线部署和运维活动提供技术支持…

HarmonyOS应用开发

引言 本章将深入探讨 HarmonyOS 应用开发的关键方面,包括应用的生命周期、数据存储和网络访问。了解这些内容对于创建功能丰富、高效的 HarmonyOS 应用至关重要。 目录 HarmonyOS 应用的生命周期HarmonyOS 应用的数据存储HarmonyOS 应用的网络访问总结 1. Harmo…

python 时间加法 输出t分钟后的时间

题目: 现在时间是a点b分,请问t分钟后,是几点几分? 输入: 第一行包含一个整数a 第二行包含一个整数b 第三行包含一个整数t 其中,0≤a≤23,0≤b≤59,0≤t,t分钟后还…

【Linux】进程的基本概念和进程控制

TOC 目录 一.冯诺依曼体系结构 二. 操作系统(Operator System) 概念 设计OS的目的 定位 总结 系统调用和库函数概念 进程 基本概念 描述进程-PCB task_struct-PCB的一种 task_ struct内容分类 组织进程 查看进程 通过系统调用获取进程标识符 进程状态 D--深度…

Android内存回收机制、GC算法及内存问题分析解决

Android内存回收机制、GC算法及内存问题分析解决 在Android开发中,Java内存回收和垃圾收集(GC)机制是确保应用程序高效运行的关键部分。针对不同对象存活率,Android平台采用了引用计数算法和可达性分析法来判定对象的可回收性&am…

【代码随想录】算法训练营 第二十天 第六章 二叉树 Part 6

654. 最大二叉树 题目 给定一个不重复的整数数组 nums 。 最大二叉树 可以用下面的算法从 nums 递归地构建: 创建一个根节点,其值为 nums 中的最大值。递归地在最大值 左边 的 子数组前缀上 构建左子树。递归地在最大值 右边 的 子数组后缀上 构建右子树。 返回…

IntelliJ IDEA 2023.2.1 (Ultimate Edition) 版本 Git 如何合并多次的本地提交进行 Push

本心、输入输出、结果 文章目录 IntelliJ IDEA 2023.2.1 (Ultimate Edition) 版本 Git 如何合并多次的本地提交进行 Push前言为什么需要把多次本地提交合并合并提交的 2 种形式:事中合并、事后合并事中合并事后合并:支持拆分为多组提交弘扬爱国精神IntelliJ IDEA 2023.2.1 (U…

Android Camera App启动流程解析

前言:做了7年的camera app开发,给自己一个总结,算是对camera的一次告白吧。Camera被大家誉为手机的眼睛,是现在各大手机厂商的卖点,也是各大厂商重点发力的地方。Camera的重要性我就不在这里赘述了,让我们进…

【跟小嘉学习JavaWeb开发】第一章 开发环境搭建

系列文章目录 【跟小嘉学习JavaWeb开发】第一章 开发环境搭建 文章目录 系列文章目录[TOC](文章目录) 前言一、JDK的下载与安装1.1、关于JDK的版本问题 二、环境变量配置2.1、配置 JAVA_HOME、CLASSPATH2.2、配置path2.3、启动 cmd 三、编写代码、编译并执行3.1、编写代码&…

输出所有最长公共子序列

输出所有最长公共子序列 什么是最长公共子序列过程讲解完整程序代码(python) 什么是最长公共子序列 在力扣题库中的1143题有一道最长公共子序列,但是那个只是返回最长子序列的长度,而没有输出所有的最长子序列 通过上图中的举例…

Python制作采集直播弹幕小软件

嗨喽,大家好呀~这里是爱看美女的茜茜呐 环境使用: Python 3.8 Pycharm模块使用: import requests >>> pip install requests import time import tkinter👇 👇 👇 更多精彩机密、教程,尽在下方,…

AVL树详解

目录 AVL树的概念 旋转的介绍 单旋转 双旋转 旋转演示 具体实现 通过高度判断的实现 通过平衡因子判断的实现 AVL树的概念 AVL树是一种自平衡的平衡二叉查找树,它是一种高效的数据结构,可以在插入和删除节点时保持树的平衡,从而保证…

vivado时序分析-1

AMD Vivado ™ 集成设计环境 (IDE) 提供了多项报告命令 , 用于验证设计是否满足所有时序约束 , 以及是否准备好加载到应用开发板上。“Report Timing Summary ” ( 时序汇总报告 ) 属于时序验收报告 , 等同于 ISE De…

uniapp中picker 获取时间组件如何把年月日改成年月日默认时分秒为00:00:00

如图所示,uniapp中picker组件的日期格式为: 但后端要 2023-11-08 00:00:00格式 如何从2023-11-08转化为 2023-11-08 00:00:00:👇 const date new Date(e.detail.value);//"2023-11-17" date.setHours(0, 0, 0); // 2…

springboot actuator:开放全部(部分)端点、端点映射、端点保护

目录 开放全部端点(不安全): 开放部分端点 端点映射 端口保护 1、 添加Spring Security依赖: 2、Spring Security简单配置类: 3、application.yml配置规则 4、写一个简单的controller 5、简单登录页面 目…

【hcie-cloud】【2】华为云Stack解决方案介绍、缩略语整理 【下】

文章目录 华为文档获取方式、云计算发展背景、坚实基座华为云Stack,政企只能升级首选智能数据湖仓一体,让业务洞见更准,价值兑现更快MRS:一个架构可构建三种数据湖,业务场景更丰富离线数据湖:提供云原生、湖…

强化您的应用安全,从app加固开始

强化您的应用安全,从app加固开始 目录 强化您的应用安全,从app加固开始 摘要 引言 1. 加密和数据保护 2. 代码混淆 3. 防止反编译 4. 安全测试 5. 更新和补丁 6. 权限控制 7. 输入验证和输出过滤 8. 日志记录和监控 9. 安全设计和架构 10.…

GoLong的学习之路(二十二)进阶,语法之并发(go最重要的特点)(channel的主要用法)

这一章是接上一章内容继续,上一章说到协程也就是goroutine,如何使用它,这一张是讲一种数据结构。当然这个章节的数据结构非常重要。可以说这个数据结构就是为了方便协程,才制作出来的。 单纯地将函数并发执行是没有意义的。函数与…

echart宽度100px原因(解决el-tabs里的echarts图表宽度不自适应,只有100px问题)

目录 问题描述产生原因处理方法1.使用echart 的API —— resize()2.使用 v-if 总结 问题描述 项目中在el-tabs下面使用了图表,发现图表的宽度始终只有100px 产生原因 首先echart初始化的组件宽度设置了width: 100%,那么本来这个时候,echar…